Skip to main content

Advertisement

Log in

Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Epicardial fat volume (EFV) has been suggested to promote atherosclerotic plaque development in coronary arteries, and has been correlated with both coronary stenosis and acute coronary events. Although associated with progression of coronary calcification burden, a relationship with progression of coronary atheroma volume has not been previously tested. We studied patients who had clinically indicated serial 320-row multi-detector computer tomography coronary angiography with a median 25-month interval. EFV was measured at baseline and follow-up. In vessels with coronary stenosis, quantitative analysis was performed to measure atherosclerotic plaque burden, volume and aggregate plaque volume at baseline and follow-up. The study comprised 64 patients (58.4 ± 12.2 years, 27 males, 192 vessels, 193 coronary segments). 79 (41 %) coronary segments had stenosis at baseline. Stenotic segments were associated with greater baseline EFV than those without coronary stenosis (117.4 ± 45.1 vs. 102.3 ± 51.6 cm3, P = 0.046). 46 (24 %) coronary segments displayed either new plaque formation or progression of adjusted plaque burden at follow-up. These were associated with higher baseline EFV than segments without stenosis or those segments that had stenoses that did not progress (128.7 vs. 101.0 vs. 106.7 cm3 respectively, P = 0.006). On multivariate analysis, baseline EFV was the only independent predictor of coronary atherosclerotic plaque progression or new development (P = 0.014). High baseline EFV is associated with the presence of coronary artery stenosis and plaque volume progression. Accumulation of EFV may be implicated in the evolution and progression of coronary atheroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153(6):907–917. doi:10.1016/j.ahj.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  2. Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B Comp Biochem 94(2):225–232

    Article  CAS  Google Scholar 

  3. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G (1984) Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 288(6428):1401–1404

    Article  CAS  Google Scholar 

  4. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466. doi:10.1161/01.CIR.0000099542.57313.C5

    Article  PubMed  Google Scholar 

  5. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG (2006) Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5:1. doi:10.1186/1475-2840-5-1

    Article  PubMed Central  PubMed  Google Scholar 

  6. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  7. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613. doi:10.1161/CIRCULATIONAHA.107.743062

    Article  PubMed  Google Scholar 

  8. Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, Jeffrey Carr J (2008) The association of pericardial fat with calcified coronary plaque. Obesity 16(8):1914–1919. doi:10.1038/oby.2008.278

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ahmadi N, Nabavi V, Yang E, Hajsadeghi F, Lakis M, Flores F, Zeb I, Bevinal M, Ebrahimi R, Budoff M (2010) Increased epicardial, pericardial, and subcutaneous adipose tissue is associated with the presence and severity of coronary artery calcium. Acad Radiol 17(12):1518–1524. doi:10.1016/j.acra.2010.08.017

    Article  PubMed  Google Scholar 

  10. Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M (2011) Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol 34(3):166–171. doi:10.1002/clc.20840

    Article  PubMed  Google Scholar 

  11. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P (2010) Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210(1):150–154. doi:10.1016/j.atherosclerosis.2009.11.020

    Article  CAS  PubMed  Google Scholar 

  12. Schlett CL, Ferencik M, Kriegel MF, Bamberg F, Ghoshhajra BB, Joshi SB, Nagurney JT, Fox CS, Truong QA, Hoffmann U (2012) Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 222(1):129–134. doi:10.1016/j.atherosclerosis.2012.02.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rajani R, Shmilovich H, Nakazato R, Nakanishi R, Otaki Y, Cheng VY, Hayes SW, Thomson LE, Friedman JD, Slomka PJ, Min JK, Berman DS, Dey D (2013) Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr 7(2):125–132. doi:10.1016/j.jcct.2013.02.003

    Article  PubMed Central  PubMed  Google Scholar 

  14. Mahabadi AA, Berg MH, Lehmann N, Kalsch H, Bauer M, Kara K, Dragano N, Moebus S, Jockel KH, Erbel R, Mohlenkamp S (2013) Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 61(13):1388–1395. doi:10.1016/j.jacc.2012.11.062

    Article  PubMed  Google Scholar 

  15. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, Ouyang P, Espeland MA, Lohman KK, Criqui MH, Allison M, Bluemke DA, Carr JJ (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504. doi:10.3945/ajcn.2008.27358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Davidovich D, Gastaldelli A, Sicari R (2013) Imaging cardiac fat. Eur Heart J Cardiovasc Imaging 14(7):625–630. doi:10.1093/ehjci/jet045

    Article  PubMed  Google Scholar 

  17. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, Berman DS, Lahiri A (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220(1):223–230. doi:10.1016/j.atherosclerosis.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  18. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Matsubara J, Matsuzawa Y, Sumida H, Nagayoshi Y, Nakaura T, Awai K, Yamashita Y, Jinnouchi H, Matsui K, Kimura K, Umemura S, Ogawa H (2010) Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis 209(2):573–578. doi:10.1016/j.atherosclerosis.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  19. Lehman SJ, Schlett CL, Bamberg F, Lee H, Donnelly P, Shturman L, Kriegel MF, Brady TJ, Hoffmann U (2009) Assessment of coronary plaque progression in coronary computed tomography angiography using a semiquantitative score. JACC Cardiovasc Imaging 2(11):1262–1270. doi:10.1016/j.jcmg.2009.07.007

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wong DT, Soh SY, Ko BS, Cameron JD, Crossett M, Nasis A, Troupis J, Meredith IT, Seneviratne SK (2014) Superior CT coronary angiography image quality at lower radiation exposure with second generation 320-detector row CT in patients with elevated heart rate: a comparison with first generation 320-detector row CT. Cardiovasc Diagn Ther 4(4):299–306. doi:10.3978/j.issn.2223-3652.2014.08.05

    PubMed Central  PubMed  Google Scholar 

  21. Owen MK, Noblet JN, Sassoon DJ, Conteh AM, Goodwill AG, Tune JD (2014) Perivascular adipose tissue and coronary vascular disease. Arterioscler Thromb Vasc Biol 34(8):1643–1649. doi:10.1161/ATVBAHA.114.303033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4(6):416–429. doi:10.3978/j.issn.2223-3652.2014.11.05

    PubMed Central  PubMed  Google Scholar 

  23. Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Jissho S, Taguchi H, Yoshikawa J, Shimada K (2014) Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis 237(1):353–360. doi:10.1016/j.atherosclerosis.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  24. Oikawa M, Owada T, Yamauchi H, Misaka T, Machii H, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2015) Epicardial adipose tissue reflects the presence of coronary artery disease: comparison with abdominal visceral adipose tissue. BioMed Res Int 2015:483982. doi:10.1155/2015/483982

    Article  PubMed Central  PubMed  Google Scholar 

  25. Iacobellis G, Singh N, Wharton S, Sharma AM (2008) Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 16(7):1693–1697. doi:10.1038/oby.2008.251

    Article  PubMed  Google Scholar 

  26. Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF, Piantadosi C, Lau DH, Sanders P, Wittert GA, Worthley SG (2009) Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson 11:15. doi:10.1186/1532-429X-11-15

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bastarrika G, Broncano J, Schoepf UJ, Schwarz F, Lee YS, Abro JA, Costello P, Zwerner PL (2010) Relationship between coronary artery disease and epicardial adipose tissue quantification at cardiac CT: comparison between automatic volumetric measurement and manual bidimensional estimation. Acad Radiol 17(6):727–734. doi:10.1016/j.acra.2010.01.015

    Article  PubMed  Google Scholar 

  28. Nakazato R, Shmilovich H, Tamarappoo BK, Cheng VY, Slomka PJ, Berman DS, Dey D (2011) Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr 5(3):172–179. doi:10.1016/j.jcct.2011.03.009

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nichols JH, Samy B, Nasir K, Fox CS, Schulze PC, Bamberg F, Hoffmann U (2008) Volumetric measurement of pericardial adipose tissue from contrast-enhanced coronary computed tomography angiography: a reproducibility study. J Cardiovasc Comput Tomogr 2(5):288–295. doi:10.1016/j.jcct.2008.08.008

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zeb I, Li D, Nasir K, Malpeso J, Batool A, Flores F, Dailing C, Karlsberg RP, Budoff M (2013) Effect of statin treatment on coronary plaque progression—a serial coronary CT angiography study. Atherosclerosis 231(2):198–204. doi:10.1016/j.atherosclerosis.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  31. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ (1998) Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339(27):1972–1978. doi:10.1056/NEJM199812313392703

    Article  CAS  PubMed  Google Scholar 

  32. Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, Sanda Y, Anno H, Kondo T, Wong ND, Narula J, Ozaki Y (2010) Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging 3(7):691–698. doi:10.1016/j.jcmg.2010.04.011

    Article  PubMed  Google Scholar 

  33. Maurovich-Horvat P, Ferencik M, Bamberg F, Hoffmann U (2009) Methods of plaque quantification and characterization by cardiac computed tomography. J Cardiovasc Comput Tomogr 3(Suppl 2):S91–S98. doi:10.1016/j.jcct.2009.10.012

    Article  PubMed  Google Scholar 

  34. Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, Belur P, Hulten E, Villines TC (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4(5):537–548. doi:10.1016/j.jcmg.2011.03.006

    Article  PubMed  Google Scholar 

  35. Leber AW, Becker A, Knez A, von Ziegler F, Sirol M, Nikolaou K, Ohnesorge B, Fayad ZA, Becker CR, Reiser M, Steinbeck G, Boekstegers P (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47(3):672–677. doi:10.1016/j.jacc.2005.10.058

    Article  PubMed  Google Scholar 

  36. Schmid M, Achenbach S, Ropers D, Komatsu S, Ropers U, Daniel WG, Pflederer T (2008) Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol 101(5):579–584. doi:10.1016/j.amjcard.2007.10.016

    Article  PubMed  Google Scholar 

  37. Burgstahler C, Reimann A, Beck T, Kuettner A, Baumann D, Heuschmid M, Brodoefel H, Claussen CD, Kopp AF, Schroeder S (2007) Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol 42(3):189–195. doi:10.1097/01.rli.0000254408.96355.85

    Article  CAS  PubMed  Google Scholar 

  38. Ito H, Motoyama S, Sarai M, Kawai H, Harigaya H, Kan S, Kato S, Anno H, Takahashi H, Naruse H, Ishii J, Narula J, Ozaki Y (2014) Characteristics of plaque progression detected by serial coronary computed tomography angiography. Heart Vessels 29(6):743–749. doi:10.1007/s00380-013-0420-4

    Article  PubMed  Google Scholar 

  39. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, Wilmer C, Carlson H, Taylor K, Ballard W, Karmpaliotis D, Kalynych A, Brown C 3rd (2011) Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv 4(2):198–208. doi:10.1016/j.jcin.2010.10.008

    Article  PubMed  Google Scholar 

  40. Wang JC, Normand SL, Mauri L, Kuntz RE (2004) Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 110(3):278–284. doi:10.1161/01.CIR.0000135468.67850.F4

    Article  PubMed  Google Scholar 

  41. Okura K, Maeno K, Okura S, Takemori H, Toya D, Tanaka N, Miyayama S (2015) Pericardial fat volume is an independent risk factor for the severity of coronary artery disease in patients with preserved ejection fraction. J Cardiol 65(1):37–41. doi:10.1016/j.jjcc.2014.03.015

    Article  PubMed  Google Scholar 

  42. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, Tittus J, Parhofer K, Becker C, Reiser M, Knez A, Leber AW (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29(5):781–786. doi:10.1161/ATVBAHA.108.180653

    Article  CAS  PubMed  Google Scholar 

  43. Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, Nasu K, Kinoshita Y, Tsuchikane E, Suzuki T, Kimura G (2013) Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol 167(6):2852–2858. doi:10.1016/j.ijcard.2012.07.026

    Article  PubMed  Google Scholar 

  44. Park JH, Park YS, Kim YJ, Lee IS, Kim JH, Lee JH, Choi SW, Jeong JO, Seong IW (2010) Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound 18(4):121–126. doi:10.4250/jcu.2010.18.4.121

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, Emungania O, Alessi MC, Clement K, Bernard M, Dutour A (2012) Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 60(15):1381–1389. doi:10.1016/j.jacc.2012.06.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

DW and BK are supported by NHF (Australia) Post-Doctoral-fellowships and Robertson-Family-Research-Cardiologist-Fund. PJP is supported by a Post-doctoral Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis T. L. Wong.

Ethics declarations

Conflict of interest

None.

Additional information

Peter J. Psaltis and Andrew H. Talman have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psaltis, P.J., Talman, A.H., Munnur, K. et al. Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. Int J Cardiovasc Imaging 32, 317–328 (2016). https://doi.org/10.1007/s10554-015-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0762-3

Keywords

Navigation