Skip to main content
Log in

Normal mitral annulus dynamics and its relationships with left ventricular and left atrial function

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Mitral annulus (MA) geometry and dynamics are crucial for preserving normal mitral valve (MV) function. Static reference values for MA parameters have been reported, but the normal MA dynamics during the entire cardiac cycle remains controversial. MV full-volume datasets were obtained by three-dimensional transthoracic echocardiography from 50 healthy volunteers (18–74 years; 31 men) to assess MA changes in size and shape during entire cardiac cycle. Using simultaneous multiplanar review, projected MA area (MAA) and circumference (MAC), antero-posterior (AP) and anterolateral-posteromedial (ALPM) diameters, and sphericity index (SphI) were obtained at: mitral valve closure (MVC), mid- and end-systole (ES), early- (EDF) and late-diastolic filling, and end-diastole. MAA and AP diameter were the most “active” parameters, changing in all reference frames (p < 0.001). MAA and AP diameter started to contract before MVC (during the left atrial contraction), reaching their minimum at MVC. Maximum MAA occurred at ES, while maximum AP diameter and SphI occurred at EDF. MAA fractional shortening was 35 ± 10 %. AP diameter change was 25 ± 10 %. MAC, ALPM and SphI showed similar patterns during left ventricular (LV) systole, and remained unchanged during diastole. Fractional change was 35 ± 10 % for MAC, and 13 ± 8 % for ALPM diameter. Our study provides the normal dynamics of the MA during the entire cardiac cycle. It reveals “pre-systolic” contraction of the MA, related to left atrial (LA) contraction, and minimal MAA during early LV systole. Therefore, the normal MA dynamics relates to a “physiologic LA-LV coupling”, and a complete MA contraction requires both and properly timed LA and LV systole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ALPM:

Anterolateral-posteromedial

AP:

Anterior-posterior

ED:

End-diastole

EDF:

Early diastolic filling

ES:

End-systole

LA:

Left atrium

LDF:

Late diastolic filling

LV:

Left ventricle

MA:

Mitral annulus

MR:

Mitral regurgitation

MS:

Mid-systole

MV:

Mitral valve

MVC:

Mitral valve closure

SphI:

Sphericity index

TTE:

Transthoracic echocardiography

References

  1. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW et al (2003) A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease. Eur Heart J 24(13):1231–1243

    Article  PubMed  Google Scholar 

  2. Little SH, Ben Zekry S, Lawrie GM, Zoghbi WA (2010) Dynamic annular geometry and function in patients with mitral regurgitation: insight from three-dimensional annular tracking. J Am Soc Echocardiogr 23(8):872–879

    Article  PubMed  Google Scholar 

  3. Topilsky Y, Vaturi O, Watanabe N, Bichara V, Nkomo VT, Michelena H et al (2013) Real-time 3-dimensional dynamics of functional mitral regurgitation: a prospective quantitative and mechanistic study. J Am Heart Assoc 2(3):e000039

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kaplan SR, Bashein G, Sheehan FH, Legget ME, Munt B, Li XN et al (2000) Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J 139(3):378–387

    Article  CAS  PubMed  Google Scholar 

  5. Grewal J, Suri R, Mankad S, Tanaka A, Mahoney DW, Schaff HV et al (2010) Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation 121(12):1423–1431

    Article  PubMed  Google Scholar 

  6. Caiani EG, Fusini L, Veronesi F, Tamborini G, Maffessanti F, Gripari P et al (2011) Quantification of mitral annulus dynamic morphology in patients with mitral valve prolapse undergoing repair and annuloplasty during a 6-month follow-up. Eur J Echocardiogr 12(5):375–383

    Article  PubMed  Google Scholar 

  7. Mahmood F, Subramaniam B, Gorman JH III, Levine RM, Gorman RC, Maslow A et al (2009) Three-dimensional echocardiographic assessment of changes in mitral valve geometry after valve repair. Ann Thorac Surg 88(6):1838–1844

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ryan LP, Jackson BM, Enomoto Y, Parish L, Plappert TJ, St John-Sutton MG et al (2007) Description of regional mitral annular nonplanarity in healthy human subjects: a novel methodology. J Thorac Cardiovasc Surg 134(3):644–648

    Article  PubMed  Google Scholar 

  9. Veronesi F, Corsi C, Sugeng L, Caiani EG, Weinert L, Mor-Avi V et al (2008) Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 21(4):347–354

    Article  PubMed  Google Scholar 

  10. Kwan J, Jeon MJ, Kim DH, Park KS, Lee WH (2009) Does the mitral annulus shrink or enlarge during systole? A real-time 3D echocardiography study. J Korean Med Sci 24(2):203–208

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ormiston JA, Shah PM, Tei C, Wong M (1981) Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64(1):113–120

    Article  CAS  PubMed  Google Scholar 

  12. Kwan J, Qin JX, Popovic ZB, Agler DA, Thomas JD, Shiota T (2004) Geometric changes of mitral annulus assessed by real-time 3-dimensional echocardiography: becoming enlarged and less nonplanar in the anteroposterior direction during systole in proportion to global left ventricular systolic function. J Am Soc Echocardiogr 17(11):1179–1184

    Article  PubMed  Google Scholar 

  13. Glasson JR, Komeda M, Daughters GT, Foppiano LE, Bolger AF, Tye TL et al (1997) Most ovine mitral annular three-dimensional size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation 96(9 Suppl):II-115–II-22 discussion II-23

    Google Scholar 

  14. Timek T, Dagum P, Lai DT, Green GR, Glasson JR, Daughters GT et al (2001) The role of atrial contraction in mitral valve closure. J Heart Valve Dis 10(3):312–319

    CAS  PubMed  Google Scholar 

  15. Timek TA, Lai DT, Dagum P, Green GR, Glasson JR, Daughters GT et al (2000) Mitral annular dynamics during rapid atrial pacing. Surgery 128(2):361–367

    Article  CAS  PubMed  Google Scholar 

  16. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 14(7):611–644

    Article  PubMed  Google Scholar 

  17. Foster GP, Dunn AK, Abraham S, Ahmadi N, Sarraf G (2009) Accurate measurement of mitral annular dimensions by echocardiography: importance of correctly aligned imaging planes and anatomic landmarks. J Am Soc Echocardiogr 22(5):458–463

    Article  PubMed  Google Scholar 

  18. Anwar AM, Soliman OI, ten Cate FJ, Nemes A, McGhie JS, Krenning BJ et al (2007) True mitral annulus diameter is underestimated by two-dimensional echocardiography as evidenced by real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging 23(5):541–547

    Article  PubMed  Google Scholar 

  19. Anwar AM, Soliman OI, Nemes A, Germans T, Krenning BJ, Geleijnse ML et al (2007) Assessment of mitral annulus size and function by real-time 3-dimensional echocardiography in cardiomyopathy: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 20(8):941–948

    Article  PubMed  Google Scholar 

  20. Daimon M, Saracino G, Fukuda S, Koyama Y, Kwan J, Song JM et al (2010) Dynamic change of mitral annular geometry and motion in ischemic mitral regurgitation assessed by a computerized 3D echo method. Echocardiography 27(9):1069–1077

    Article  PubMed  Google Scholar 

  21. Dubois D, Dubois EF (1916) Clinical calorimetry. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  CAS  Google Scholar 

  22. Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D et al (2010) Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr 11(4):359–368

    Article  PubMed  Google Scholar 

  23. Muraru D, Badano LP, Peluso D, Dal Bianco L, Casablanca S, Kocabay G et al (2013) Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr 26(6):618–628

    Article  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 25(1):3–46

    Article  PubMed  Google Scholar 

  25. Ling LH, Enriquez-Sarano M, Seward JB, Orszulak TA, Schaff HV, Bailey KR et al (1997) Early surgery in patients with mitral regurgitation due to flail leaflets: a long-term outcome study. Circulation 96(6):1819–1825

    Article  CAS  PubMed  Google Scholar 

  26. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352(9):875–883

    Article  CAS  PubMed  Google Scholar 

  27. De Simone R, Wolf I, Mottl-Link S, Hoda R, Mikhail B, Sack FU et al (2006) A clinical study of annular geometry and dynamics in patients with ischemic mitral regurgitation: new insights into asymmetrical ring annuloplasty. Eur J Cardiothorac Surg 29(3):355–361

    Article  PubMed  Google Scholar 

  28. Khabbaz KR, Mahmood F, Shakil O, Warraich HJ, Gorman JH III, Gorman RC et al (2013) Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann Thorac Surg 95(1):105–110

    Article  PubMed  Google Scholar 

  29. Warraich HJ, Matyal R, Bergman R, Hess PE, Khabbaz K, Manning WJ et al (2013) Impact of aortic valve replacement for aortic stenosis on dynamic mitral annular motion and geometry. Am J Cardiol 112(9):1445–1449

  30. Tsang W, Meineri M, Hahn RT, Veronesi F, Shah AP, Osten M et al (2013) A three-dimensional echocardiographic study on aortic-mitral coupling in transcatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging 14(10):950–956

    Article  PubMed  Google Scholar 

  31. Tsang W, Veronesi F, Sugeng L, Weinert L, Takeuchi M, Jeevanandam V et al (2013) Mitral valve dynamics in severe aortic stenosis before and after aortic valve replacement. J Am Soc Echocardiogr 26(6):606–614

    Article  PubMed  Google Scholar 

  32. Mahmood F, Gorman JH III, Subramaniam B, Gorman RC, Panzica PJ, Hagberg RC et al (2010) Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg 90(4):1212–1220

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jensen MO, Hagege AA, Otsuji Y, Levine RA, Leducq Transatlantic MN (2013) The unsaddled annulus: biomechanical culprit in mitral valve prolapse? Circulation 127(7):766–768

    Article  PubMed Central  PubMed  Google Scholar 

  34. Davis PK, Kinmonth JB (1963) The movements of the annulus of the mitral valve. J Cardiovasc Surg (Torino) 4:427–431

    CAS  Google Scholar 

  35. Tsakiris AG, Von Bernuth G, Rastelli GC, Bourgeois MJ, Titus JL, Wood EH (1971) Size and motion of the mitral valve annulus in anesthetized intact dogs. J Appl Physiol 30(5):611–618

    CAS  PubMed  Google Scholar 

  36. Silbiger JJ (2012) Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J 164(2):163–176

    Article  PubMed  Google Scholar 

  37. Gertz ZM, Raina A, Saghy L, Zado ES, Callans DJ, Marchlinski FE et al (2011) Evidence of atrial functional mitral regurgitation due to atrial fibrillation: reversal with arrhythmia control. J Am Coll Cardiol 58(14):1474–1481

    Article  PubMed  Google Scholar 

  38. Cameli M, Lisi M, Righini FM, Massoni A, Natali BM, Focardi M et al (2013) Usefulness of atrial deformation analysis to predict left atrial fibrosis and endocardial thickness in patients undergoing mitral valve operations for severe mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol 111(4):595–601

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Mihaila is an EACVI Research Grant winner on 2011 and an ESC Training Grant winner on 2014. Dr Mihaila is also a winner of a Grant for PhD research of the University of Medicine and Pharmacy “Carol Davila” Bucharest, POSDRU/159/1.5/S/141531.

Conflict of interest

Doctors Badano and Muraru are consultants and received equipment grants from GE Healthcare and TomTec Imaging Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorina Mihaila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihaila, S., Muraru, D., Miglioranza, M.H. et al. Normal mitral annulus dynamics and its relationships with left ventricular and left atrial function. Int J Cardiovasc Imaging 31, 279–290 (2015). https://doi.org/10.1007/s10554-014-0547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0547-0

Keywords

Navigation