Skip to main content
Log in

Myocardial viability by contrast-enhanced cardiovascular magnetic resonance in patients with coronary artery disease: comparison with gated single-photon emission tomography and FDG position emission tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to assess the value of contrast-enhanced cardiovascular magnetic resonance (CMR) in viability for patients with coronary artery disease and left ventricular (LV) dysfunction (ejection fraction [EF] ≤50%), comparing to gated thallium-201 (201Tl) single photon emission computed tomography (SPECT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).

Methods and Results

One hundred sixteen patients (EF 37.8 ± 16.2%) underwent stress-reinjection or rest-redistribution gated-SPECT and CMR (46 FDG-PET) within 1 month. All images were analyzed in a 17-segment and 0–4 scales system. Of 1972 segments, delayed enhancement (DE) on CMR correlated well with 201Tl reduction (r = 0.90, p < 0.0001). The agreement of SPECT (≥50% maximal 201Tl activity) and CMR (≤50% DE) was 96.8% (κ = 0.62). CMR detected more subendocardial scars in 18 subjects (60 segments). Reduced 201Tl activity but none DE were observed in 19 subjects (76 segments; more inferior) who had lower EF and larger end-systolic volume (p < 0.05). Of 411 dysfunctional segments from 46 patients, FDG-PET (≥50% of maximal FDG uptake) detected more viability (9%).

Conclusion

The extent of DE correlated 201Tl activity well. CMR could detect more small infarcts, while FDG-PET could detect more viability. CMR could distinguish between artifacts or infarction on SPECT, especially in poor LV function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chatterjee K, Matloff JM, Swan HJ et al (1975) Abnormal regional metabolism and mechanical function in patients with ischemic heart diseases: improvement after successful regional revascularization by aortocoronary bypass. Circulation 52:390–399

    PubMed  CAS  Google Scholar 

  2. Alderman EL, Fisher LD, Litwin P et al (1983) Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 68:785–795

    PubMed  CAS  Google Scholar 

  3. Brundage BH, Massie BM, Botvinick EH (1984) Improved regional ventricular function after successful surgical revascularization. J Am Coll Cardiol 3:902–908

    Article  PubMed  CAS  Google Scholar 

  4. Gursurer M, Emre A, Gercekoglu H, Uslubas S, Aksoy M, Ersek B (2002) Long-term prognostic value of stress-redistribution-reinjection Tl-201 imaging in patients with severe left ventricular dysfunction and coronary artery bypass surgery. Int J Cardiovasc Imaging 18:125–133

    Article  PubMed  Google Scholar 

  5. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW (1993) Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 87:1630–1641

    PubMed  CAS  Google Scholar 

  6. Udelson JE, Coleman PS, Metherall J et al (1994) Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation 89:2552–2561

    PubMed  CAS  Google Scholar 

  7. Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Dierckx RA, Jager PL (2006) Imaging techniques in nuclear cardiology for the assessment of myocardial viability. Int J Cardiovasc Imaging 22:63–80

    Article  PubMed  Google Scholar 

  8. Bengel FM (2006) Positron emission tomography and magnetic resonance imaging in heart failure. J Nucl Cardiol 13:145–149

    Article  PubMed  Google Scholar 

  9. Slart RH, Bax JJ, De Boer J et al (2005) Comparison of (99 m)Tc-sestamibi/(18)FDG DISA SPECT with PET for the detection of viability in patients with coronary artery disease and left ventricular dysfunction. Eur J Nucl Med Mol Imaging 32:972–979

    Article  PubMed  Google Scholar 

  10. Depuey EG, Garcia EV (1989) Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 30:441–449

    PubMed  CAS  Google Scholar 

  11. Segall G, Davis M (1989) Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med 30:548–555

    PubMed  CAS  Google Scholar 

  12. DePuey EG, Rozanski A (1995) Using gated technetium 99-m sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 36:952–955

    PubMed  CAS  Google Scholar 

  13. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA (1997) Value of gating technetium-99 m sestamibi single photon emission computer tomographic imaging. J Am Coll Cardiol 30:1687–1692

    Article  PubMed  CAS  Google Scholar 

  14. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial infarction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  15. Beek AM, Kuhl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  16. Kuhl HP, Beek AM, van der Weerdt AP et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348

    Article  PubMed  Google Scholar 

  17. Knuesel PR, Nanz D, Wyss C et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108:1095–1100

    Article  PubMed  Google Scholar 

  18. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single-photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  19. Swingen C, Seethamraju RT, Jerosch-Herold M (2003) An approach to the three-dimensional display of left ventricular function and viability using MRI. Int J Cardiovasc Imaging 19:325–336

    Article  PubMed  Google Scholar 

  20. Sensky PR, Samani NJ, Reek C, Cherryman GR (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 18:373–383

    Article  PubMed  Google Scholar 

  21. Tadamura E, Kudoh T, Motooka M et al (1999) Assessment of regional and global left ventricular function by reinjection Tl-201 SPECT and rest Tc-99 m sestamibi ECG-gated SPECT. J Am Coll Cardiol 33:991–997

    Article  PubMed  CAS  Google Scholar 

  22. Tadamura E, Kudoh T, Motooka M et al (1999) Use of technetium-99 m sestamibi ECG-gated single-photon emission tomography for the evaluation of left ventricular function following coronary artery bypass graft: comparison with three-dimensional magnetic resonance imaging. Eur J Nucl Med 26:705–712

    Article  PubMed  CAS  Google Scholar 

  23. Tadamura E, Mamede M, Kubo S et al (2003) The effect of nitroglycerin on myocardial blood flow in various segments characterized by rest-redistribution thallium SPECT. J Nucl Med 44:745–751

    PubMed  CAS  Google Scholar 

  24. Kubo S, Tadamura E, Kudoh T et al (2001) Assessment of the effect of revascularization early after CABG using ECG-gated perfusion single-photon emission tomography. Eur J Nucl Med 28:230–239

    Article  PubMed  CAS  Google Scholar 

  25. Schoder H, Campisi R, Ohtake T et al (1999) Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 33:1328–1337

    Article  PubMed  CAS  Google Scholar 

  26. Tadamura E, Iida H, Matsumoto K et al (2001) Comparison of myocardial blood flow during dobutamine-atropine infusion with that after dipyridamole administration in normal men. J Am Coll Cardiol 37:130–136

    Article  PubMed  CAS  Google Scholar 

  27. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomclature for tomographic imaging of the heart. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  28. Wu YW, Huang PJ, Lee CM et al (2005) Assessment of myocardial viability using F-18 fluorodeoxyglucose/Tc-99 m sestamibi dual-isotope simultaneous acquisition SPECT: comparison with Tl-201 stress-reinjection SPECT. J Nucl Cardiol 12:451–459

    Article  PubMed  Google Scholar 

  29. Kuhl HP, Lipke CS, Krombach GA et al (2006) Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: comparison of contrast-enhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J 27:846–853

    Article  PubMed  Google Scholar 

  30. Slart RH, Bax JJ, van Veldhuisen DJ et al (2006) Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDG-PET. J Nucl Cardiol 13:210–219

    Article  PubMed  Google Scholar 

  31. Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  32. Ansari M, Araoz PA, Gerard SK et al (2004) Comparison of late enhancement cardiovascular magnetic resonance and thallium SPECT in patients with coronary disease and left ventricular dysfunction. J Cardiovasc Magn Reson 6:549–556

    Article  PubMed  Google Scholar 

  33. Wu YW, Huang PJ, Su MY et al (2006) Myocardium viability assessed by delayed contrast-enhanced magnetic resonance imaging in patients with severe ischemic heart failure: a comparison with thallium SPECT and dobutamine echocardiography. World Heart J 1:35–46

    Google Scholar 

  34. Giorgetti A, Pingitore A, Favilli B, Kusch A, Lombardi M, Marzullo P (2005) Baseline/postnitrate tetrofosmin SPECT for myocardial viability assessment in patients with postischemic severe left ventricular dysfunction: new evidence from MRI. J Nucl Med 46:1285–1293

    PubMed  Google Scholar 

  35. Ebeling Barbier C, Bjerner T, Johansson L, Lind L, Ahlstrom H (2006) Myocardial scars more frequent than expected magnetic resonance imaging detects potential risk group. Circulation 48:765–771

    Google Scholar 

  36. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99 m sestamibi imaging. J Am Coll Cardiol 32:57–62

    Article  PubMed  CAS  Google Scholar 

  37. Hachamovitch R, Hayes SW, Friedman JD et al (2003) Determinants of risk and it temporal variations in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol 41:1329–1340

    Article  PubMed  Google Scholar 

  38. Wu YW, Yen RF, Chieng PU, Huang PJ (2003) Thallium-201 myocardial perfusion imaging in differentiation of ischemic from nonischemic dilated cardiomyopathy in patients with left ventricular dysfunction. J Nucl Cardiol 10:369–374

    Article  PubMed  Google Scholar 

  39. Haussan N, Escanye JM, Juilliere Y et al (2002) 201Tl SPECT abnormalities, documented at rest in dilated cardiomyopathy, are related to a lower than normal myocardial thickness but not an excess in myocardial wall stress. J Nucl Med 43:451–457

    Google Scholar 

  40. Kuhl HP, van der Weerdt A, Beek A, Visser F, Hanrath P, van Rossum A (2006) Relation of end-diastolic wall thickness and the residual rim of viable myocardium by magnetic resonance imaging to myocardial viability assessed by fluorine-18 deoxyglucose positron emission tomography. Am J Cardiol 97:452–457

    Article  PubMed  Google Scholar 

  41. McCrohon JA, Lyne JC, Rahman SL, Lorenz CH, Underwood SR, Pennell DJ (2005) Adjunctive role of cardiovascular magnetic resonance in the assessment of patients with inferior attenuation on myocardium perfusion SPECT. J Cardiovasc Magn Reson 7:377–382

    Article  PubMed  Google Scholar 

  42. Selvanayagam JB, Jerosch-Herold M, Porto I et al (2005) Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 112:3289–3296

    Article  PubMed  Google Scholar 

  43. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F (1997) Comparative diagnostic accuracy of Tl-201 and Tc-99 m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 29:69–77

    Article  PubMed  CAS  Google Scholar 

  44. Slart RH, Agool A, van Veldhuisen DJ, Dierckx RA, Bax JJ (2006) Nitrate administration increase blood flow in dysfunctional but viable myocardium, leading to improved assessment of myocardial viability: a PET study. J Nucl Med 47:1307–1311

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have indicated they have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tadamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YW., Tadamura, E., Kanao, S. et al. Myocardial viability by contrast-enhanced cardiovascular magnetic resonance in patients with coronary artery disease: comparison with gated single-photon emission tomography and FDG position emission tomography. Int J Cardiovasc Imaging 23, 757–765 (2007). https://doi.org/10.1007/s10554-007-9215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-007-9215-y

Keywords

Navigation