Skip to main content

Advertisement

Log in

Disadvantaged neighborhoods and racial disparity in breast cancer outcomes: the biological link

  • Review article
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Neighborhoods encompass complex environments comprised of unique economic, physical, and social characteristics that have a profound impact on the residing individual’s health and, collectively, on the community’s wellbeing. Neighborhood disadvantage (ND) is one of several factors that prominently contributes to racial breast cancer (BC) health disparities in American women. African American (AA) women develop more aggressive breast cancer features, such as triple-negative receptor status and more advanced histologic grade and tumor stage, and suffer worse clinical outcomes than European American (EA) women. While the adverse effects of neighborhood disadvantage on health, including increased risk of cancer and decreased longevity, have recently come into focus, the specific molecular mechanisms by which neighborhood disadvantage increases BC risk and worsens BC outcomes (survivorship, recurrence, mortality) are not fully elucidated. This review illuminates the probable biological links between neighborhood disadvantage and predominantly BC risk, with an emphasis on stress reactivity and inflammation, epigenetics and telomere length in response to adverse neighborhood conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Cronin KA et al (2018) Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 124(13):2785–2800

    Article  PubMed  Google Scholar 

  3. Gupta V et al (2018) Racial disparity in breast cancer: can it be mattered for prognosis and therapy. J Cell Commun Signal 12(1):119–132

    Article  PubMed  Google Scholar 

  4. Howlader N et al (2014) US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju055

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huo D et al (2017) Comparison of breast cancer molecular features and survival by african and european ancestry in the cancer genome atlas. JAMA Oncol 3(12):1654–1662

    Article  PubMed  PubMed Central  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  7. Bauer KR et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728

    Article  PubMed  Google Scholar 

  8. Brewster AM, Chavez-MacGregor M, Brown P (2014) Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol 15(13):e625–e634

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cadoo KA, Fornier MN, Morris PG (2013) Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging 57(4):312–321

    CAS  PubMed  Google Scholar 

  10. Elston CW, Ellis IO (2002) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991;19:403–410. Histopathology 41(3A):151–152, (discussion 152-153)

  11. Kohler BA, et al (2015) Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst 107(6):djv048

  12. Martin DN et al (2009) Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS ONE 4(2):e4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozdemir BC, Dotto GP (2017) Racial differences in cancer susceptibility and survival: more than the color of the skin? Trends Cancer 3(3):181–197

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chlebowski RT et al (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97(6):439–448

    Article  PubMed  Google Scholar 

  15. Elledge RM et al (1994) Tumor biologic factors and breast cancer prognosis among white, hispanic, and black women in the United States. J Natl Cancer Inst 86(9):705–712

    Article  CAS  PubMed  Google Scholar 

  16. Akinyemiju TF et al (2015) Residential environment and breast cancer incidence and mortality: a systematic review and meta-analysis. BMC Cancer 15:191

    Article  PubMed  PubMed Central  Google Scholar 

  17. Akinyemiju TF et al (2013) Individual and neighborhood socioeconomic status and healthcare resources in relation to black-white breast cancer survival disparities. J Cancer Epidemiol 2013:490472

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coughlin SS et al (2008) Contextual analysis of breast and cervical cancer screening and factors associated with health care access among United States women, 2002. Soc Sci Med 66(2):260–275

    Article  PubMed  Google Scholar 

  19. Du XL, Fang S, Meyer TE (2008) Impact of treatment and socioeconomic status on racial disparities in survival among older women with breast cancer. Am J Clin Oncol 31(2):125–132

    Article  PubMed  Google Scholar 

  20. Elkin EB et al (2010) Geographic access and the use of screening mammography. Med Care 48(4):349–356

    Article  PubMed  PubMed Central  Google Scholar 

  21. DeGuzman PB et al (2017) Impact of urban neighborhood disadvantage on late stage breast cancer diagnosis in virginia. J Urban Health 94(2):199–210

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith BP, Madak-Erdogan Z (2018) Urban neighborhood and residential factors associated with breast cancer in african american women: a systematic review. Horm Cancer 9(2):71–81

    Article  PubMed  Google Scholar 

  23. Ellis L et al (2018) Racial and ethnic disparities in cancer survival: the contribution of tumor, sociodemographic, institutional, and neighborhood characteristics. J Clin Oncol 36(1):25–33

    Article  CAS  PubMed  Google Scholar 

  24. Haji-Jama S et al (2016) Disparities report: disparities among minority women with breast cancer living in impoverished areas of california. Cancer Control 23(2):157–162

    Article  PubMed  Google Scholar 

  25. Jones A, Paxton RJ (2015) Neighborhood disadvantage, physical activity barriers, and physical activity among african american breast cancer survivors. Prev Med Rep 2:622–627

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim S, Chukwudozie B, Calhoun E (2013) Sociodemographic characteristics, distance to the clinic, and breast cancer screening results. J Health Dispar Res Pract 6(1):70

    PubMed  PubMed Central  Google Scholar 

  27. Kim S et al (2015) The effects of navigation and types of neighborhoods on timely follow-up of abnormal mammogram among black women. Med Res Arch 1(3):1–10. https://doi.org/10.18103/mra.v0i3.111

    Article  Google Scholar 

  28. Kish JK et al (2014) Racial and ethnic disparities in cancer survival by neighborhood socioeconomic status in Surveillance, Epidemiology, and End Results (SEER) Registries. J Natl Cancer Inst Monogr 2014(49):236–243

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barber S et al (2016) Neighborhood disadvantage, poor social conditions, and cardiovascular disease incidence among african American adults in the jackson heart study. Am J Public Health 106(12):2219–2226

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ross CE, Mirowsky J (2001) Neighborhood disadvantage, disorder, and health. J Health Soc Behav 42(3):258–276

    Article  CAS  PubMed  Google Scholar 

  31. Farmer MM, Ferraro KF (2005) Are racial disparities in health conditional on socioeconomic status? Soc Sci Med 60(1):191–204

    Article  PubMed  Google Scholar 

  32. Kawachi I, Daniels N, Robinson DE (2005) Health disparities by race and class: why both matter. Health Aff (Millwood) 24(2):343–352

    Article  Google Scholar 

  33. Woods LM, Rachet B, Coleman MP (2006) Origins of socio-economic inequalities in cancer survival: a review. Ann Oncol 17(1):5–19

    Article  CAS  PubMed  Google Scholar 

  34. Ellis L et al (2018) Trends in cancer survival by health insurance status in california from 1997 to 2014. JAMA Oncol 4(3):317–323

    Article  PubMed  Google Scholar 

  35. Henry KA et al (2013) The joint effects of census tract poverty and geographic access on late-stage breast cancer diagnosis in 10 US States. Health Place 21:110–121

    Article  PubMed  Google Scholar 

  36. Niu X et al (2013) Cancer survival disparities by health insurance status. Cancer Med 2(3):403–411

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huerta EE et al (2018) Take care of your neighborhood. Breast Cancer Res Treat 167(1):225–234

    Article  PubMed  Google Scholar 

  38. Henry KA et al (2011) Breast cancer stage at diagnosis: is travel time important? J Commun Health 36(6):933–942

    Article  Google Scholar 

  39. Sampson RJ, Raudenbush SW, Earls F (1997) Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277(5328):918–924

    Article  CAS  PubMed  Google Scholar 

  40. Fang CY, Tseng M (2018) Ethnic density and cancer: a review of the evidence. Cancer 124(9):1877–1903

    Article  PubMed  Google Scholar 

  41. Pruitt SL et al (2015) Residential racial segregation and mortality among black, white, and Hispanic urban breast cancer patients in Texas, 1995 to 2009. Cancer 121(11):1845–1855

    Article  PubMed  Google Scholar 

  42. Bemanian A, Beyer KM (2017) Measures matter: the local exposure/isolation (LEx/Is) metrics and relationships between local-level segregation and Breast cancer survival. Cancer Epidemiol Biomarkers Prev 26(4):516–524

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hill TD, Ross CE, Angel RJ (2005) Neighborhood disorder, psychophysiological distress, and health. J Health Soc Behav 46(2):170–186

    Article  PubMed  Google Scholar 

  44. Liu YZ, Wang YX, Jiang CL (2017) Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci 11:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. JAMA 298(14):1685–1687

    Article  CAS  PubMed  Google Scholar 

  46. Costanzo ES, Sood AK, Lutgendorf SK (2011) Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am 31(1):109–132

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nagaraja AS et al (2016) SnapShot: stress and disease. Cell Metab 23(2):388–388.e1

    Article  CAS  PubMed  Google Scholar 

  48. Ling J, Kumar R (2012) Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett 322(2):119–126

    Article  CAS  PubMed  Google Scholar 

  49. Cash E et al (2015) Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun 48:102–114

    Article  CAS  PubMed  Google Scholar 

  50. Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3(5):350–361

    Article  CAS  PubMed  Google Scholar 

  51. Agnoli C et al (2017) Biomarkers of inflammation and breast cancer risk: a case–control study nested in the EPIC-Varese cohort. Sci Rep 7(1):12708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geng Y et al (2013) Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS ONE 8(1):e54959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pierce BL et al (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27(21):3437–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Olden K, Olden HA, Lin YS (2015) The role of the epigenome in translating neighborhood disadvantage into health disparities. Curr Environ Health Rep 2(2):163–170

    Article  CAS  PubMed  Google Scholar 

  56. Smith JA et al (2017) Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: the Multi-Ethnic Study of Atherosclerosis. Epigenetics 12(8):662–673

    Article  PubMed  PubMed Central  Google Scholar 

  57. Notterman DA, Mitchell C (2015) Epigenetics and understanding the impact of social determinants of health. Pediatr Clin North Am 62(5):1227–1240

    Article  PubMed  PubMed Central  Google Scholar 

  58. Szyf M (2011) The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics 6(8):971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen E et al (2011) Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Mol Psychiatry 16(7):729–737

    Article  CAS  PubMed  Google Scholar 

  60. Kyrtopoulos SA (2013) Making sense of OMICS data in population-based environmental health studies. Environ Mol Mutagen 54(7):468–479

    Article  CAS  PubMed  Google Scholar 

  61. Marshall KW et al (2010) A blood-based biomarker panel for stratifying current risk for colorectal cancer. Int J Cancer 126(5):1177–1186

    CAS  PubMed  Google Scholar 

  62. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  CAS  PubMed  Google Scholar 

  63. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  64. Fleischer T et al (2017) DNA methylation at enhancers identifies distinct breast cancer lineages. Nat Commun 8(1):1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaise M et al (2008) CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter 13(1):35–41

    Article  CAS  PubMed  Google Scholar 

  66. Nakajima T et al (2006) Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev 15(11):2317–2321

    Article  CAS  PubMed  Google Scholar 

  67. Ushijima T (2007) Epigenetic field for cancerization. J Biochem Mol Biol 40(2):142–150

    CAS  PubMed  Google Scholar 

  68. Bediaga NG et al (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12(5):R77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fackler MJ et al (2011) Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 71(19):6195–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fleischer T et al (2014) Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 15(8):435

    PubMed  PubMed Central  Google Scholar 

  71. Holm K et al (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jovanovic J et al (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kamalakaran S et al (2011) DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol 5(1):77–92

    Article  CAS  PubMed  Google Scholar 

  74. Ronneberg JA et al (2011) Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 5(1):61–76

    Article  CAS  PubMed  Google Scholar 

  75. van Hoesel AQ et al (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cacioppo JT, Hawkley LC (2003) Social isolation and health, with an emphasis on underlying mechanisms. Perspect Biol Med 46(3 Suppl):S39–S52

    Article  PubMed  Google Scholar 

  77. Zhang SM et al (2005) Folate intake and risk of breast cancer characterized by hormone receptor status. Cancer Epidemiol Biomarkers Prev 14(8):2004–2008

    Article  CAS  PubMed  Google Scholar 

  78. Boggs DA et al (2010) Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am J Epidemiol 172(11):1268–1279

    Article  PubMed  PubMed Central  Google Scholar 

  79. Harris HR et al (2017) An adolescent and early adulthood dietary pattern associated with inflammation and the incidence of breast cancer. Cancer Res 77(5):1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gonzalez-Nahm S, et al (2017) Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ Epigenet 3(2):dvx007

  81. Godfrey KM, Gluckman PD, Hanson MA (2010) Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 21(4):199–205

    Article  CAS  PubMed  Google Scholar 

  82. Gluckman PD et al (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boekelheide K et al (2012) Predicting later-life outcomes of early-life exposures. Environ Health Perspect 120(10):1353–1361

    Article  PubMed  PubMed Central  Google Scholar 

  84. McCullough LE et al (2015) Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer. Ann Epidemiol 25(4):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rose DP, Haffner SM, Baillargeon J (2007) Adiposity, the metabolic syndrome, and breast cancer in African-American and white American women. Endocr Rev 28(7):763–777

    Article  CAS  PubMed  Google Scholar 

  86. McCullough LE, et al (2015) Gene-specific promoter methylation status in hormone-receptor-positive breast cancer associates with postmenopausal body size and recreational physical activity. Int J Cancer Clin Res 2(1)

  87. Weinsier RL et al (2000) Energy expenditure and free-living physical activity in black and white women: comparison before and after weight loss. Am J Clin Nutr 71(5):1138–1146

    Article  CAS  PubMed  Google Scholar 

  88. Arcidiacono B et al (2012) Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res 2012:789174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Henderson KD et al (2006) Ethnic disparity in the relationship between obesity and plasma insulin-like growth factors: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev 15(11):2298–2302

    Article  CAS  PubMed  Google Scholar 

  90. Key TJ et al (2001) Energy balance and cancer: the role of sex hormones. Proc Nutr Soc 60(1):81–89

    Article  CAS  PubMed  Google Scholar 

  91. Muti P (2004) The role of endogenous hormones in the etiology and prevention of breast cancer: the epidemiological evidence. Ann N Y Acad Sci 1028:273–282

    Article  CAS  PubMed  Google Scholar 

  92. Speakman JR, Goran MI (2010) Tissue-specificity and ethnic diversity in obesity-related risk of cancer may be explained by variability in insulin response and insulin signaling pathways. Obesity (Silver Spring) 18(6):1071–1078

    Article  CAS  Google Scholar 

  93. Moore SC et al (2016) Association of Leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 176(6):816–825

    Article  PubMed  PubMed Central  Google Scholar 

  94. McCullough LE et al (2015) Associations between prenatal physical activity, birth weight, and DNA methylation at genomically imprinted domains in a multiethnic newborn cohort. Epigenetics 10(7):597–606

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rodgers KM et al (2018) Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res 160:152–182

    Article  CAS  PubMed  Google Scholar 

  96. White AJ, Bradshaw PT, Hamra GB (2018) Air pollution and breast cancer: a review. Curr Epidemiol Rep 5(2):92–100

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stults WP, Wei Y (2018) Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US. Med Oncol 35(6):88

    Article  CAS  PubMed  Google Scholar 

  98. White AJ et al (2016) Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer. Environ Res 145:93–100

    Article  CAS  PubMed  Google Scholar 

  99. Callahan CL et al (2018) Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors. Environ Res 161:418–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. White AJ et al (2019) Airborne metals and polycyclic aromatic hydrocarbons in relation to mammographic breast density. Breast Cancer Res 21(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  101. Johansson A, Flanagan JM (2017) Epigenome-wide association studies for breast cancer risk and risk factors. Trends Cancer Res 12:19–28

    PubMed  PubMed Central  Google Scholar 

  102. Zhao QY et al (2016) Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model. Clin Epigenetics 8:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blackburn EH (1991) Structure and function of telomeres. Nature 350(6319):569–573

    Article  CAS  PubMed  Google Scholar 

  104. Monaghan P (2010) Telomeres and life histories: the long and the short of it. Ann N Y Acad Sci 1206:130–142

    Article  PubMed  Google Scholar 

  105. Olsson M, Wapstra E, Friesen CR (2017) Evolutionary ecology of telomeres: a review. Ann N Y Acad Sci 1422:5–28

    Article  PubMed  Google Scholar 

  106. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  107. Jennings BJ, Ozanne SE, Hales CN (2000) Nutrition, oxidative damage, telomere shortening, and cellular senescence: individual or connected agents of aging? Mol Genet Metab 71(1–2):32–42

    Article  CAS  PubMed  Google Scholar 

  108. Monaghan P (2014) Organismal stress, telomeres and life histories. J Exp Biol 217(Pt 1):57–66

    Article  PubMed  Google Scholar 

  109. Barrett EL, Richardson DS (2011) Sex differences in telomeres and lifespan. Aging Cell 10(6):913–921

    Article  CAS  PubMed  Google Scholar 

  110. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    Article  CAS  PubMed  Google Scholar 

  111. Dantzer B, Fletcher QE (2015) Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Exp Gerontol 71:38–47

    Article  CAS  PubMed  Google Scholar 

  112. Harley CB et al (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27(4):375–382

    Article  CAS  PubMed  Google Scholar 

  113. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350(6265):1193–1198

    Article  CAS  PubMed  Google Scholar 

  114. Koorstra JB et al (2008) Pancreatic carcinogenesis. Pancreatology 8(2):110–125

    Article  PubMed  PubMed Central  Google Scholar 

  115. Londono-Vallejo JA (2008) Telomere instability and cancer. Biochimie 90(1):73–82

    Article  CAS  PubMed  Google Scholar 

  116. Salpea KD et al (2010) Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 209(1):42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 35:112–131

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wentzensen IM et al (2011) The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 20(6):1238–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Drury SS et al (2014) The association of telomere length with family violence and disruption. Pediatrics 134(1):e128–e137

    Article  PubMed  PubMed Central  Google Scholar 

  120. Geronimus AT et al (2015) Race-ethnicity, poverty, urban stressors, and telomere length in a detroit community-based sample. J Health Soc Behav 56(2):199–224

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mitchell C et al (2014) Social disadvantage, genetic sensitivity, and children’s telomere length. Proc Natl Acad Sci USA 111(16):5944–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Needham BL et al (2015) Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology 26(4):528–535

    Article  PubMed  PubMed Central  Google Scholar 

  123. Park M et al (2015) Where you live may make you old: the association between perceived poor neighborhood quality and leukocyte telomere length. PLoS ONE 10(6):e0128460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shalev I et al (2013) Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 18(5):576–581

    Article  CAS  PubMed  Google Scholar 

  125. Theall KP et al (2013) Neighborhood disorder and telomeres: connecting children’s exposure to community level stress and cellular response. Soc Sci Med 85:50–58

    Article  PubMed  PubMed Central  Google Scholar 

  126. Frias C et al (2012) Telomere dysfunction and genome instability. Front Biosci (Landmark Ed) 17:2181–2196

    Article  CAS  Google Scholar 

  127. DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    Article  CAS  PubMed  Google Scholar 

  128. Ennour-Idrissi K, Maunsell E, Diorio C (2017) Telomere length and breast cancer prognosis: a systematic review. Cancer Epidemiol Biomarkers Prev 26(1):3–10

    Article  CAS  PubMed  Google Scholar 

  129. Kammori M et al (2015) Telomere shortening in breast cancer correlates with the pathological features of tumor progression. Oncol Rep 34(2):627–632

    Article  CAS  PubMed  Google Scholar 

  130. Ennour-Idrissi K et al (2016) Association of telomere length with breast cancer prognostic factors. PLoS ONE 11(8):e0161903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Samulin Erdem J et al (2017) Mechanisms of breast cancer risk in shift workers: association of telomere shortening with the duration and intensity of night work. Cancer Med 6(8):1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gomez SL et al (2015) The impact of neighborhood social and built environment factors across the cancer continuum: current research, methodological considerations, and future directions. Cancer 121(14):2314–2330

    Article  PubMed  Google Scholar 

  133. Lynch SM, Rebbeck TR (2013) Bridging the gap between biologic, individual, and macroenvironmental factors in cancer: a multilevel approach. Cancer Epidemiol Biomarkers Prev 22(4):485–495

    Article  PubMed  PubMed Central  Google Scholar 

  134. Warnecke RB et al (2008) Approaching health disparities from a population perspective: the National Institutes of Health Centers for Population Health and Health Disparities. Am J Public Health 98(9):1608–1615

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zahnd WE, McLafferty SL (2017) Contextual effects and cancer outcomes in the United States: a systematic review of characteristics in multilevel analyses. Ann Epidemiol 27(11):739–748

    Article  PubMed  Google Scholar 

  136. Polite BN et al (2017) Charting the Future of cancer health disparities research: a position statement from the american association for cancer research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute. J Clin Oncol 35(26):3075–3082

    Article  PubMed  Google Scholar 

  137. Schootman M et al (2017) Geospatial approaches to cancer control and population sciences. Cancer Epidemiol Biomarkers Prev 26(4):472–475

    Article  PubMed  PubMed Central  Google Scholar 

  138. Jackson JW, VanderWeele TJ (2019) Intersectional decomposition analysis with differential exposure, effects, and construct. Soc Sci Med 1:1–10. https://doi.org/10.1016/j.socscimed.2019.01.033

    Article  Google Scholar 

  139. VanderWeele TJ, Jackson JW, Li S (2016) Causal inference and longitudinal data: a case study of religion and mental health. Soc Psychiatry Psychiatr Epidemiol 51(11):1457–1466

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to RA from the National Cancer Institute, including U01 CA179671 and R01 CA169127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Aneja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, G., Ogden, A., McCullough, L.E. et al. Disadvantaged neighborhoods and racial disparity in breast cancer outcomes: the biological link. Cancer Causes Control 30, 677–686 (2019). https://doi.org/10.1007/s10552-019-01180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-01180-4

Keywords

Navigation