Skip to main content

Advertisement

Log in

Potential protein markers for breast cancer recurrence: a retrospective cohort study

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Background

We evaluated five key proteins involved in various cancer-related pathways and assessed their relation to breast cancer recurrence.

Methods

We used the Kentucky Cancer Registry to retrospectively identify primary invasive breast cancer cases (n = 475) that were diagnosed and treated at University of Kentucky Medical Center between 2000 and 2007. Breast cancer recurrence was observed in 62 cases during the 5-year follow-up after diagnosis. Protein expression or activity level was analyzed from surgery tissue using immuno-histochemical assays.

Results

Compared to ER+/PR+/HER2− patients without recurrence, those with recurrence had higher TWIST expression (p = 0.049) but lower ABL1/ABL2 activity (p = 0.003) in primary tumors. We also found that triple-negative breast cancer patients with recurrence had higher SNAI1 expression compared to those without recurrence (p = 0.03). After adjusting for potential confounders, the higher ABL1/ABL2 activity in primary tumors was associated with a decreased risk of recurrence (OR 0.72, 95% CI 0.85–0.90) among ER+/PR+/HER2− patients. In addition, among patients with recurrence we observed that the activity level of ABL1/ABL2 was significantly increased in recurrent tumors compared to the matched primary tumors regardless of the subtype (p = 0.013).

Conclusions

These findings provide evidence that the expression/activity level of various proteins may be differentially associated with risk of recurrence of breast tumor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Guarneri V, Dieci MV, Conte P (2013) Relapsed triple-negative breast cancer: challenges and treatment strategies. Drugs 73(12):1257–1265

    Article  CAS  PubMed  Google Scholar 

  3. Hockel M, Dornhofer N (2005) The hydra phenomenon of cancer: why tumors recur locally after microscopically complete resection. Cancer Res 65(8):2997–3002

    Article  PubMed  Google Scholar 

  4. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tevaarwerk AJ, Gray RJ, Schneider BP, Smith ML, Wagner LI, Fetting JH, Davidson N, Goldstein LJ, Miller KD, Sparano JA (2013) Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 119(6):1140–1148

    Article  PubMed  Google Scholar 

  6. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037

    Article  CAS  PubMed  Google Scholar 

  7. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  8. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  9. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192

    Article  CAS  PubMed  Google Scholar 

  10. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst 5(12):1512–1526

    PubMed  Google Scholar 

  12. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D, Grimley JS, Wandless TJ, Demichele A, Investigators IST et al (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44

    Article  CAS  PubMed  Google Scholar 

  15. Hebbar N, Wang C, Rangnekar VM (2012) Mechanisms of apoptosis by the tumor suppressor Par-4. J Cell Physiol 227(12):3715–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendez-Lopez LF, Zapata-Benavides P, Zavala-Pompa A, Aguado-Barrera ME, Pacheco-Calleros J, Rodriguez-Padilla C, Cerda-Flores RM, Cortes-Gutierrez EI, Davila-Rodriguez MI (2010) Immunohistochemical analysis of prostate apoptosis response-4 (Par-4) in Mexican women with breast cancer: a preliminary study. Arch Med Res 41(4):261–268

    Article  CAS  PubMed  Google Scholar 

  17. Nagai MA, Gerhard R, Salaorni S, Fregnani JH, Nonogaki S, Netto MM, Soares FA (2010) Down-regulation of the candidate tumor suppressor gene PAR-4 is associated with poor prognosis in breast cancer. Int J Oncol 37(1):41–49

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  19. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209

    Article  CAS  PubMed  Google Scholar 

  20. Karamboulas C, Ailles L (2013) Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta 1830(2):2481–2495

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Pendergast AM (2015) The emerging role of ABL kinases in solid tumors. Trends Cancer 1(2):110–123

    Article  PubMed  PubMed Central  Google Scholar 

  22. Srinivasan D, Sims JT, Plattner R (2008) Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene 27(8):1095–1105

    Article  CAS  PubMed  Google Scholar 

  23. https://www.arc.gov/appalachian_region/TheAppalachianRegion.asp. Accessed 20 Mar 2018

  24. Ganguly SS, Fiore LS, Sims JT, Friend JW, Srinivasan D, Thacker MA, Cibull ML, Wang C, Novak M, Kaetzel DM et al (2012) c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene 31(14):1804–1816

    Article  CAS  PubMed  Google Scholar 

  25. Ganguly SS, Plattner R (2012) Activation of Abl family kinases in solid tumors. Genes Cancer 3(5–6):414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith-Pearson PS, Greuber EK, Yogalingam G, Pendergast AM (2010) Abl kinases are required for invadopodia formation and chemokine-induced invasion. J Biol Chem 285(51):40201–40211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiore LS, Ganguly SS, Sledziona J, Cibull ML, Wang C, Richards DL, Neltner JM, Beach C, McCorkle JR, Kaetzel DM et al (2014) c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer. Oncogene 33(36):4508–4520

    Article  CAS  PubMed  Google Scholar 

  28. Yu T, Chen X, Zhang W, Colon D, Shi J, Napier D, Rychahou P, Lu W, Lee EY, Weiss HL et al (2012) Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: Implications for colon cancer. J Biol Chem 287:3760–3768

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  CAS  PubMed  Google Scholar 

  30. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    Article  CAS  PubMed  Google Scholar 

  31. Collins LC, Botero ML, Schnitt SJ (2005) Bimodal frequency distribution of estrogen receptor immunohistochemical staining results in breast cancer: an analysis of 825 cases. Am J Clin Pathol 123(1):16–20

    Article  PubMed  Google Scholar 

  32. Rhodes J, York RD, Tara D, Tajinda K, Druker BJ (2000) CrkL functions as a nuclear adaptor and transcriptional activator in Bcr-Abl-expressing cells. Exp Hematol 28(3):305–310

    Article  CAS  PubMed  Google Scholar 

  33. Kar B, Reichman CT, Singh S, O’Connor JP, Birge RB (2007) Proapoptotic function of the nuclear Crk II adaptor protein. Biochemistry 46(38):10828–10840

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad A (2013) Pathways to breast cancer recurrence. ISRN Oncol. https://doi.org/10.1155/2013/290568

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10(12):871–877

    Article  CAS  PubMed  Google Scholar 

  36. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Article  CAS  Google Scholar 

  37. Saphner T, Tormey DC, Gray R (1996) Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14(10):2738–2746

    Article  CAS  PubMed  Google Scholar 

  38. Chacon RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12(Suppl 2):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wangchinda P, Ithimakin S (2016) Factors that predict recurrence later than 5 years after initial treatment in operable breast cancer. World J Surg Oncol 14(1):223

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  41. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  42. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, Thompson EW (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25(6):629–642

    Article  CAS  PubMed  Google Scholar 

  43. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C et al (2008) Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 68(3):937–945

    Article  CAS  PubMed  Google Scholar 

  44. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496

    Article  PubMed  Google Scholar 

  45. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, Artemov D, Kowalski J, Carraway H, van Diest P et al (2012) Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene 31(27):3223–3234

    Article  CAS  PubMed  Google Scholar 

  46. Riaz M, Sieuwerts AM, Look MP, Timmermans MA, Smid M, Foekens JA, Martens JW (2012) High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes. Breast Cancer Res 14(5):R123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Nes JG, de Kruijf EM, Putter H, Faratian D, Munro A, Campbell F, Smit VT, Liefers GJ, Kuppen PJ, van de Velde CJ et al (2012) Co-expression of SNAIL and TWIST determines prognosis in estrogen receptor-positive early breast cancer patients. Breast Cancer Res Treat 133(1):49–59

    Article  CAS  PubMed  Google Scholar 

  48. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21(20):3241–3246

    Article  CAS  PubMed  Google Scholar 

  49. Bradley WD, Koleske AJ (2009) Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 122(Pt 19):3441–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang JY (2014) The capable ABL: what is its biological function? Mol Cell Biol 34(7):1188–1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Colicelli J (2010) ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 3(139):re6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  53. Zhao H, Ou-Yang F, Chen IF, Hou MF, Yuan SS, Chang HL, Lee YC, Plattner R, Waltz SE, Ho SM et al (2010) Enhanced resistance to tamoxifen by the c-ABL proto-oncogene in breast cancer. Neoplasia 12(3):214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weigel MT, Banerjee S, Arnedos M, Salter J, A’Hern R, Dowsett M, Martin LA (2013) Enhanced expression of the PDGFR/Abl signaling pathway in aromatase inhibitor-resistant breast cancer. Ann Oncol 24(1):126–133

    Article  CAS  PubMed  Google Scholar 

  55. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13(8):559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi SP et al (2007) Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 67(13):6136–6145

    Article  CAS  PubMed  Google Scholar 

  57. Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, Chodosh LA, Cardiff RD, Gunther EJ (2008) Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Invest 118(1):51–63

    Article  CAS  PubMed  Google Scholar 

  58. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114

    Article  CAS  PubMed  Google Scholar 

  59. Arnold KM, Pohlig RT, Sims-Mourtada J (2017) Co-activation of Hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer. Oncol Lett 14(5):5285–5292

    PubMed  PubMed Central  Google Scholar 

  60. Yang L, Tang H, Kong Y, Xie X, Chen J, Song C, Liu X, Ye F, Li N, Wang N et al (2015) LGR5 promotes breast cancer progression and maintains stem-like cells through activation of Wnt/beta-catenin signaling. Stem Cells 33(10):2913–2924

    Article  CAS  PubMed  Google Scholar 

  61. Qureshi A, Pervez S (2010) Allred scoring for ER reporting and it’s impact in clearly distinguishing ER negative from ER positive breast cancers. J Pak Med Assoc 60(5):350–353

    PubMed  Google Scholar 

  62. Mao Y, Zhang N, Xu J, Ding Z, Zong R, Liu Z (2012) Significance of heterogeneous Twist2 expression in human breast cancers. PLoS ONE 7(10):e48178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou S, Sun X, Yu L, Zhou R, Li A, Li M, Yang W (2018) Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J Cancer 9(3):604–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hebbar N, Shrestha-Bhattarai T, Rangnekar VM (2013) Par-4 prevents breast cancer recurrence. Breast Cancer Res 15(5):314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Esparza-Lopez J, Ramos-Elias PA, Castro-Sanchez A, Rocha-Zavaleta L, Escobar-Arriaga E, Zentella-Dehesa A, Leon-Rodriguez E, Medina-Franco H, Ibarra-Sanchez Mde J (2016) Primary breast cancer cell culture yields intra-tumor heterogeneous subpopulations expressing exclusive patterns of receptor tyrosine kinases. BMC Cancer 16(1):740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang Z, Zhang H, Hou J, Niu J, Ma Z, Zhao H, Liu C (2015) Clinical implications of beta-catenin protein expression in breast cancer. Int J Clin Exp Pathol 8(11):14989–14994

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, Gibb WJ, Wang NJ, Ziyad S, Tong F et al (2012) Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci USA 109(8):2724–2729

    Article  CAS  PubMed  Google Scholar 

  68. Bryce NS, Reynolds AB, Koleske AJ, Weaver AM (2013) WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS ONE 8(5):e64533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amin H, Nayak D, Ur Rasool R, Chakraborty S, Kumar A, Yousuf K, Sharma PR, Ahmed Z, Sharma N, Magotra A et al (2016) Par-4 dependent modulation of cellular beta-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol Carcinog 55(5):864–881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Dana Napier for her expertise in TMA construction and talent with immunohistochemistry. Drs. He, Plattner, Rangnekar, Zhou, and Tucker are supported by the University of Kentucky Markey Cancer Center (P30CA177558). Dr. Stewart is supported by NIH fellowship Grant T32 CA160003. The Markey Cancer Center’s Research Communications Office assisted with preparation of this manuscript.

Funding

This research project was supported by Markey Cancer Center pilot funding IRB# 14-0172-P3H, the Biospecimen Procurement and Translational Pathology, the Biostatistics and Bioinformatics, and the Cancer Research Informatics Shared Resource Facilities of the University of Kentucky Markey Cancer Center (P30CA177558).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan He or Thomas C. Tucker.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Plattner, R., Rangnekar, V. et al. Potential protein markers for breast cancer recurrence: a retrospective cohort study. Cancer Causes Control 30, 41–51 (2019). https://doi.org/10.1007/s10552-018-1099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-018-1099-8

Keywords

Navigation