Skip to main content

Advertisement

Log in

Intake of dietary carbohydrates in early adulthood and adolescence and breast density among young women

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Carbohydrate intake increases postprandial insulin secretion and may affect breast density, a strong risk factor for breast cancer, early in life. We examined associations of adolescent and early adulthood intakes of total carbohydrates, glycemic index/load, fiber, and simple sugars with breast density among 182 young women.

Methods

Diet was assessed using three 24-h recalls at each of five Dietary Intervention Study in Children (DISC) clinic visits when participants were age 10–19 years and at the DISC06 Follow-Up Study clinic visit when participants were age 25–29 years. Associations between energy-adjusted carbohydrates and MRI-measured percent dense breast volume (%DBV) and absolute dense breast volume (ADBV) at 25–29 years were quantified using multivariable-adjusted mixed-effects linear models.

Results

Adolescent sucrose intakes and premenarcheal total carbohydrates intakes were modestly associated with higher %DBV (mean %DBVQ1 vs Q4, 16.6 vs 23.5% for sucrose; and 17.2 vs 22.3% for premenarcheal total carbohydrates, all Ptrend ≤ 0.02), but not with ADBV. However, adolescent intakes of fiber and fructose were not associated with %DBV and ADBV. Early adulthood intakes of total carbohydrates, glycemic index/load, fiber, and simple sugars were not associated with %DBV and ADBV.

Conclusions

Insulinemic carbohydrate diet during puberty may be associated with adulthood breast density, but our findings need replication in larger studies. Clinical Trials Registration ClinicalTrials.gov Identifier, NCT00458588 April 9, 2007; NCT00000459 October 27, 1999

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADBV:

Absolute dense breast volume;

ANDBV:

Absolute non-dense breast volume

BMI:

Body mass index

BRC:

Breast cancer

DEXA:

Dual-energy X-ray absorptiometry

DISC:

Dietary intervention study in children

DISC06:

Dietary intervention study in children 2006 Follow-Up Study

IQR:

Interquartile range

MRI:

Magnetic resonance imaging

%DBV:

Percent dense breast volume

References

  1. Wolever TM, Bolognesi C (1996) Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. J Nutr 126:2798–2806

    PubMed  CAS  Google Scholar 

  2. Liao S, Li J, Wei W, Wang L, Zhang Y, Li J, Wang C, Sun S (2011) Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev 12:1061–1065

    PubMed  Google Scholar 

  3. Bhandari R, Kelley GA, Hartley TA, Rockett IR (2014) Metabolic syndrome is associated with increased breast cancer risk: a systematic review with meta-analysis. Int J Breast Cancer 2014:189384

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nestler JE (2000) Obesity, insulin, sex steroids and ovulation. Int J Obes Relat Metab Disord 24(Suppl 2):S71–S73

    Article  PubMed  CAS  Google Scholar 

  5. Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi Y, Seke Etet PF (2013) Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer 20:R1-r17

    Article  PubMed  CAS  Google Scholar 

  6. Brand-Miller JC, Stockmann K, Atkinson F, Petocz P, Denyer G (2008) Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: analysis of a database of more than 1000 foods. Am J Clin Nutr 89(1):97–105

    Article  PubMed  CAS  Google Scholar 

  7. Mullie P, Koechlin A, Boniol M, Autier P, Boyle P (2016) Relation between breast cancer and high glycemic index or glycemic load: a meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 56:152–159

    Article  PubMed  CAS  Google Scholar 

  8. Aune D, Chan DS, Greenwood DC, Vieira AR, Rosenblatt DA, Vieira R, Norat T (2012) Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol 23:1394–1402

    Article  PubMed  CAS  Google Scholar 

  9. Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P (2013) Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res 319:1671–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303:767–770

    Article  PubMed  CAS  Google Scholar 

  11. Javed A, Lteif A (2013) Development of the human breast. Semin Plast Surg 27:5–12

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5:119–137

    Article  PubMed  CAS  Google Scholar 

  13. Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8:201

    Article  PubMed  CAS  Google Scholar 

  14. Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, Swerdlow AJ (2014) Timing of pubertal stages and breast cancer risk: the breakthrough generations study. Breast Cancer Res 16:R18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menarche (2012) menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13:1141–1151

    Article  Google Scholar 

  16. Ewertz M, Duffy SW, Adami HO, Kvale G, Lund E, Meirik O, Mellemgaard A, Soini I, Tulinius H (1990) Age at first birth, parity and risk of breast cancer: a meta-analysis of 8 studies from the Nordic countries. Int J Cancer 46:597–603

    Article  PubMed  CAS  Google Scholar 

  17. Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I, Tokuoka S (2003) Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 160:707–717

    Article  PubMed  CAS  Google Scholar 

  18. Colditz GA, Frazier AL (1995) Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev 4:567–571

    PubMed  CAS  Google Scholar 

  19. Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, Vachon C, Bakker MF, Giles GG, Chia KS et al (2014) Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 106(5)

  20. McCormack VA, Perry NM, Vinnicombe SJ, Dos Santos Silva I (2010) Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer 127:452–461

    Article  PubMed  CAS  Google Scholar 

  21. Krishnan K, Baglietto L, Stone J, Simpson JA, Severi G, Evans CF, MacInnis RJ, Giles GG, Apicella C, Hopper JL (2017) Longitudinal study of mammographic density measures that predict breast cancer risk. Cancer Epidemiol Biomarkers Prev 26:651–660

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yaghjyan L, Ghita GL, Rosner B, Farvid M, Bertrand KA, Tamimi RM (2016) Adolescent fiber intake and mammographic breast density in premenopausal women. Breast Cancer Res 18:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, Huang Y, Couch FJ, Kushi LH, Cerhan JR (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166:456–464

    Article  PubMed  CAS  Google Scholar 

  24. Mishra GD, dos Santos Silva I, McNaughton SA, Stephen A, Kuh D (2011) Energy intake and dietary patterns in childhood and throughout adulthood and mammographic density: results from a British prospective cohort. Cancer Causes Control 22:227–235

    Article  PubMed  Google Scholar 

  25. Gaskins AJ, Pereira A, Quintiliano D, Shepherd JA, Uauy R, Corvalan C, Michels KB (2017) Dairy intake in relation to breast and pubertal development in Chilean girls. Am J Clin Nutr 105:1166–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jung S, Egleston BL, Chandler DW, Van Horn L, Hylton NM, Klifa CC, Lasser NL, LeBlanc ES, Paris K, Shepherd JA et al (2015) Adolescent endogenous sex hormones and breast density in early adulthood. Breast Cancer Res 17:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jung S, Goloubeva O, Klifa C, LeBlanc ES, Snetselaar LG, Van Horn L, Dorgan JF (2016) Dietary fat intake during adolescence and breast density among young women. Cancer Epidemiol Biomarkers Prev 25:918–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schoemaker MJ, Jones ME, Allen S, Hoare J, Ashworth A, Dowsett M, Swerdlow AJ (2017) Childhood body size and pubertal timing in relation to adult mammographic density phenotype. Breast Cancer Res 19:13

    Article  PubMed  PubMed Central  Google Scholar 

  29. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 57:289–300

    Google Scholar 

  30. DISC Collaborative Research Group (1993) Dietary intervention study in children (DISC) with elevated low-density-lipoprotein cholesterol: design and baseline characteristics. Ann Epidemiol 3:393–402

    Article  Google Scholar 

  31. Dorgan JF, Liu L, Klifa C, Hylton N, Shepherd JA, Stanczyk FZ, Snetselaar LG, Van Horn L, Stevens VJ, Robson A et al (2010) Adolescent diet and subsequent serum hormones, breast density, and bone mineral density in young women: results of the Dietary Intervention Study in Children follow-up study. Cancer Epidemiol Biomarkers Prev 19:1545–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dorgan JF, Klifa C, Shepherd JA, Egleston BL, Kwiterovich PO, Himes JH, Gabriel K, Horn L, Snetselaar LG, Stevens VJ et al (2012) Height, adiposity and body fat distribution and breast density in young women. Breast Cancer Res 14:R107

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  34. Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell Scientific, edn., Oxford

    Google Scholar 

  35. van Horn LV, Stumbo P, Moag-Stahlberg A, Obarzanek E, Hartmuller VW, Farris RP, Kimm SY, Frederick M, Snetselaar L, Liu K (1993) The dietary intervention study in children (DISC): dietary assessment methods for 8- to 10-year-olds. J Am Diet Assoc 93:1396–1403

    Article  PubMed  Google Scholar 

  36. Jones JA, Hartman TJ, Klifa CS, Coffman DL, Mitchell DC, Vernarelli JA, Snetselaar LG, Van Horn L, Stevens VJ, Robson AM et al (2014) Dietary energy density is positively associated with breast density among young women. J Acad Nutr Diet 115(3):353–359

    Article  PubMed  PubMed Central  Google Scholar 

  37. Farvid MS, Eliassen AH, Cho E, Chen WY, Willett WC (2015) Adolescent and early adulthood dietary carbohydrate quantity and quality in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 24:1111–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    Article  PubMed  CAS  Google Scholar 

  39. Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values. Am J Clin Nutr 76:5–56

    Article  PubMed  CAS  Google Scholar 

  40. Miller JB, Pang E, Broomhead L (1995) The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars. Br J Nutr 73:613–623

    Article  PubMed  CAS  Google Scholar 

  41. Wolever TM, Jenkins DJ, Jenkins AL, Josse RG (1991) The glycemic index: methodology and clinical implications. Am J Clin Nutr 54:846–854

    Article  PubMed  CAS  Google Scholar 

  42. Klifa C, Carballido-Gamio J, Wilmes L, Laprie A, Lobo C, Demicco E, Watkins M, Shepherd J, Gibbs J, Hylton N (2004) Quantification of breast tissue index from MR data using fuzzy clustering. Conf Proc IEEE Eng Med Biol Soc 3:1667–1670

    PubMed  CAS  Google Scholar 

  43. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, Willett WC (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149:531–540

    Article  PubMed  CAS  Google Scholar 

  44. Smith-Warner SA, Spiegelman D, Adami HO, Beeson WL, van den Brandt PA, Folsom AR, Fraser GE, Freudenheim JL, Goldbohm RA, Graham S et al (2001) Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer 92:767–774

    Article  PubMed  CAS  Google Scholar 

  45. Dorgan JF, Klifa C, Deshmukh S, Egleston BL, Shepherd JA, Kwiterovich PO Jr, Van Horn L, Snetselaar LG, Stevens VJ, Robson AM et al (2013) Menstrual and reproductive characteristics and breast density in young women. Cancer Causes Control 24:1973–1983

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York

    Book  Google Scholar 

  47. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342:1392–1398

    Article  PubMed  CAS  Google Scholar 

  48. Rose DP, Goldman M, Connolly JM, Strong LE (1991) High-fiber diet reduces serum estrogen concentrations in premenopausal women. Am J Clin Nutr 54:520–525

    Article  PubMed  CAS  Google Scholar 

  49. Goldin BR, Adlercreutz H, Gorbach SL, Warram JH, Dwyer JT, Swenson L, Woods MN (1982) Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. N Engl J Med 307:1542–1547

    Article  PubMed  CAS  Google Scholar 

  50. Goldin BR, Adlercreutz H, Dwyer JT, Swenson L, Warram JH, Gorbach SL (1981) Effect of diet on excretion of estrogens in pre- and post-menopausal women. Cancer Res 41:3771–3773

    PubMed  CAS  Google Scholar 

  51. Nagata C, Matsubara T, Fujita H, Nagao Y, Shibuya C, Kashiki Y, Shimizu H (2005) Associations of mammographic density with dietary factors in Japanese women. Cancer Epidemiol Biomarkers Prev 14:2877–2880

    Article  PubMed  Google Scholar 

  52. Qureshi SA, Couto E, Hilsen M, Hofvind S, Wu AH, Ursin G (2011) Mammographic density and intake of selected nutrients and vitamins in Norwegian women. Nutr Cancer 63:1011–1020

    Article  PubMed  CAS  Google Scholar 

  53. Ursin G, Sun CL, Koh WP, Khoo KS, Gao F, Wu AH, Yu MC (2006) Associations between soy, diet, reproductive factors, and mammographic density in Singapore Chinese women. Nutr Cancer 56:128–135

    Article  PubMed  CAS  Google Scholar 

  54. Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA (2000) Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev 9:151–160

    PubMed  CAS  Google Scholar 

  55. Duchaine CS, Dumas I, Diorio C (2014) Consumption of sweet foods and mammographic breast density: a cross-sectional study. BMC Public Health 14:554

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brisson J, Verreault R, Morrison AS, Tennina S, Meyer F (1989) Diet, mammographic features of breast tissue, and breast cancer risk. Am J Epidemiol 130:14–24

    Article  PubMed  CAS  Google Scholar 

  57. Masala G, Ambrogetti D, Assedi M, Giorgi D, Del Turco MR, Palli D (2006) Dietary and lifestyle determinants of mammographic breast density: a longitudinal study in a Mediterranean population. Int J Cancer 118:1782–1789

    Article  PubMed  CAS  Google Scholar 

  58. Knight JA, Martin LJ, Greenberg CV, Lockwood GA, Byng JW, Yaffe MJ, Tritchler DL, Boyd NF (1999) Macronutrient intake and change in mammographic density at menopause: results from a randomized trial. Cancer Epidemiol Biomarkers Prev 8:123–128

    PubMed  CAS  Google Scholar 

  59. Masala G, Assedi M, Bendinelli B, Ermini I, Occhini D, Sieri S, Brighenti F, Del Turco MR, Ambrogetti D, Palli D (2013) Glycemic index, glycemic load and mammographic breast density: the EPIC Florence longitudinal study. PLoS ONE 8:e70943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rosenbloom AL, Rohrs HJ, Haller MJ, Malasanos TH (2012) Tanner stage 4 breast development in adults: forensic implications. Pediatrics 130:e978-981

    Article  Google Scholar 

  61. Dennis B, Stamler J, Buzzard M, Conway R, Elliott P, Moag-Stahlberg A, Okayama A, Okuda N, Robertson C, Robinson F et al (2003) INTERMAP: the dietary data–process and quality control. J Hum Hypertens 17:609–622

    Article  PubMed  CAS  Google Scholar 

  62. Obarzanek E, Kimm SY, Barton BA, Van Horn LL, Kwiterovich PO Jr, Simons-Morton DG, Hunsberger SA, Lasser NL, Robson AM, Franklin FA Jr et al (2001) Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the dietary intervention study in children (DISC). Pediatrics 107:256–264

    Article  PubMed  CAS  Google Scholar 

  63. Holt SH, Miller JC, Petocz P (1997) An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 66:1264–1276

    Article  PubMed  CAS  Google Scholar 

  64. Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S (2016) Functionality of sugars in foods and health. Comp Rev Food Sci Food Saf 15:433–470

    Article  CAS  Google Scholar 

  65. Ma Y, Olendzki BC, Li W, Hafner AR, Chiriboga D, Hebert JR, Campbell M, Sarnie M, Ockene IS (2006) Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur J Clin Nutr 60:519–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mansour A, Ahadi Z, Qorbani M, Hosseini S (2014) Association between dietary intake and seasonal variations in postmenopausal women. J Diabetes Metab Disord 13:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Klifa C, Carballido-Gamio J, Wilmes L, Laprie A, Shepherd J, Gibbs J, Fan B, Noworolski S, Hylton N (2010) Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort. Magn Reson Imaging 28:8–15

    Article  PubMed  Google Scholar 

  68. Klifa C, Carballido-Gamio J, Wilmes L, Laprie A, Lobo C, DeMicco E, Watkins M, Shepherd J, Gibbs J, Hylton N (2004) Quantitation of breast tissue index from MR data using fuzzy clustering. Conf Proc IEEE Eng Med Biol Soc 3:1667–1670

    PubMed  CAS  Google Scholar 

  69. Boyd N, Martin L, Chavez S, Gunasekara A, Salleh A, Melnichouk O, Yaffe M, Friedenrich C, Minkin S, Bronskill M (2009) Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 10:569–580

    Article  PubMed  Google Scholar 

  70. Albert M, Schnabel F, Chun J, Schwartz S, Lee J, Klautau Leite AP, Moy L (2015) The relationship of breast density in mammography and magnetic resonance imaging in high-risk women and women with breast cancer. Clin Imaging 39(6):987–992

    Article  PubMed  PubMed Central  Google Scholar 

  71. National Cholesterol Education Program Expert Panel on Blood Cholesterol Levels in Children and Adolescents (1992) National cholesterol education program (NCEP): highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics 89:495–501

    Google Scholar 

  72. Michaud DS, Liu S, Giovannucci E, Willett WC, Colditz GA, Fuchs CS (2002) Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 94:1293–1300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Cancer Institute [R01CA104670 and R03 CA167764 to J.F. Dorgan] and American Institute for Cancer Research [AICR #204113 to J.F. Dorgan] and by cooperative agreements from the National Heart, Lung, and Blood Institute [U01-HL37947 to L. Van Horn, U01-HL37948 to B.A. Barton, U01-HL37954 to V.J. Stevens, U01-HL37962 to R.M. Lauer, U01-37966 to N.L. Lasser, U01-HL37975 to P.O. Kwiterovich, and U01-HL38110 to A.M. Robson].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne F. Dorgan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Goloubeva, O., Hylton, N. et al. Intake of dietary carbohydrates in early adulthood and adolescence and breast density among young women. Cancer Causes Control 29, 631–642 (2018). https://doi.org/10.1007/s10552-018-1040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-018-1040-1

Keywords

Navigation