Skip to main content

Advertisement

Log in

The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Epigenetic silencing of retinoic acid receptor-beta2 (RARbeta2) and estrogen receptor-alpha (ERalpha) expressions have been revealed to be important in the development of approaches for diagnosis and therapy of breast cancer. We aimed to explore the correlation of some potential factors with the hypermethylation status of RARbeta2 and ERalpha genes among Iranian breast cancer patients. The hypermethylation status was investigated in 137 dissected tissues from primary breast cancer patients through methylation-specific PCR. Overall, the methylation frequencies of RARbeta2 and ERalpha genes were observed in 36.5 and 51.1% of participants, respectively. The hypermethylated RARbeta2 was associated with younger age at diagnosis and negative family history of breast cancer. The hypermethylation of ERalpha was correlated positively with smoking, duration of estradiol exposure, ER-negativity in tumors and body mass index (at 5 years ago). The plasma levels of folate and vitamin B12 were inversely related to the hypermethylation status of ERalpha, after controlling for covariates. The risk of ERalpha hypermethylation was increased with high plasma level of total homocysteine. In conclusion, our data provide new insights into the possible effect of some lifestyle-related factors on the aberrant methylation drift of ERalpha and RARbeta2 genes in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Widschwendter M, Berger J, Hermann M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92:826–832

    Article  CAS  PubMed  Google Scholar 

  2. Atri M, Jafarimojarad E, Javidroozi M, Mehdipour P (2003) Lack of association between early onset of breast cancer and numbers of affected relatives in an Iranian population. Fam Cancer 2:117–118

    Article  CAS  PubMed  Google Scholar 

  3. Fackler MJ, McVeigh M, Evron E et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975

    Article  CAS  PubMed  Google Scholar 

  4. Rousseaua C, Petterssona F, Couturea MC et al (2003) The N-terminal of the estrogen receptor (ER) mediates transcriptional cross-talk with the retinoic acid receptor in human breast cancer cells. J Steroid Biochem Mol Biol 86:1–14

    Article  Google Scholar 

  5. Nass SJ, Herman JG, Gabrielson E et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    CAS  PubMed  Google Scholar 

  6. Lapidus RG, Nass SJ, Butash KA et al (1998) Mapping of ER gene CpG island methylation by methylation-specific polymerase chain reaction. Cancer Res 58:2515–2519

    CAS  PubMed  Google Scholar 

  7. Herman JG, Graff JR, Myhanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  CAS  PubMed  Google Scholar 

  8. Youssef EM, Lotan D, Isaa JP et al (2004) Hypermethylation of the retinoic acid receptor β2 gene in head and neck carcinogenesis. Clin Cancer Res 10:1733–1742

    Article  CAS  PubMed  Google Scholar 

  9. Shukla S, Mirza S, Sharma G et al (2006) Detection of RASSFIA and RARb hypermethylation in serum DNA from breast cancer patients. Epigenetics 1:88–93

    Article  PubMed  Google Scholar 

  10. Johnson IT, Belshaw NJ (2008) Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol 46:1346–1359

    Article  CAS  PubMed  Google Scholar 

  11. Bean GR, Ibarra C, Drendall C et al (2007) Hypermethylation of the breast cancer-associated gene 1 promoter does not predict cytologic atypia or correlate with surrogate end points of breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:50–56

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Toland AE, McLennan J et al (2006) Lack of germ-line promoter methylation in BRCA1-negative families with familial breast cancer. Genet Test 10:281–284

    Article  CAS  PubMed  Google Scholar 

  13. Baldwin RL, Nemeth E, Tran H et al (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60:5329–5333

    CAS  PubMed  Google Scholar 

  14. Chan AO, Issa JP, Morris JS, Hamilton SR, Rashid A (2002) Concordant CpG islands methylation in hyperplastic polyposis. Am J Pathol 160:529–536

    CAS  PubMed  Google Scholar 

  15. Euhus DM, Bu D, Milchgrub S et al (2008) DNA methylation in benign breast epithelium in relation to age and breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1051–1059

    Article  CAS  PubMed  Google Scholar 

  16. Issa JP (2000) CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249:101–118

    CAS  PubMed  Google Scholar 

  17. Li S, Rong M, Iacopetta B (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280

    Article  CAS  PubMed  Google Scholar 

  18. Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

    Article  CAS  PubMed  Google Scholar 

  19. Gunter MJ, Leitzmann MF (2006) Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 17:145–156

    Article  CAS  PubMed  Google Scholar 

  20. Nkhata KJ, Ray A, Dogan S, Grande JP, Cleary MP (2009) Mammary tumor development from T47-D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Res Treat 114:71–83

    Article  CAS  PubMed  Google Scholar 

  21. Brait M, Ford JG, Papaiahgari S et al (2009) Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomarkers Prev 18:2984–2991

    Article  CAS  PubMed  Google Scholar 

  22. Lin RK, Hsieh YS, Lin P et al (2010) The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 120:521–532

    Article  CAS  PubMed  Google Scholar 

  23. Swafford DS, Middleton SK, Palmisano WA et al (1997) Frequent aberrant methylation of p16INK4A in primary rat lung tumors. Mol Cell Biol 17:1366–1374

    CAS  PubMed  Google Scholar 

  24. Davis C, Uthus EU (2004) DNA methylation, cancer susceptibility, and nutrient interaction. Exp Biol Med (Maywood) 229:988–995

    CAS  Google Scholar 

  25. Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519

    CAS  PubMed  Google Scholar 

  26. Friso S, Choi W, Girelli D et al (2002) A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation thorough an interaction with folate status. Proc Natl Acad Sci U S A 99:5606–5611

    Article  CAS  PubMed  Google Scholar 

  27. Eckel RH, Krauss RM (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. Circulation 97:2099–2100

    CAS  PubMed  Google Scholar 

  28. Cote S, Sinnett D, Momparler RL (1998) Demethylation by 5-aza-2′-deoxycitidine of specific 5-methylcytosine sites in the promoter region of retinoic acid receptor beta gene in human colon carcinoma cells. Anticancer Drugs 9:743–750

    Article  CAS  PubMed  Google Scholar 

  29. Pappas J, Toulouse A, He′bertx J, Fetni R, Bradle WEC (2008) Allelic methylation bias of the RARB2 tumor suppressor gene promoter in cancer. Gene Chromosom Cancer 47:978–993

    Article  CAS  Google Scholar 

  30. Giacinti L, Claudio PP, Lopez M, Giordano A (2006) Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11:1–8

    Article  CAS  PubMed  Google Scholar 

  31. Lapidus RG, Ferguson AT, Ottaviano YL et al (1996) Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 2:805–810

    CAS  PubMed  Google Scholar 

  32. Wei M, Xu EJ, Dignam J et al (2008) Estrogen receptor a, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Res Treat 111:113–120

    Article  CAS  PubMed  Google Scholar 

  33. McCourt CK, Mutch DG, Gibb RK et al (2007) Body mass index: relationship to clinical, pathologic and features of microsatellite instability in endometrial cancer. Gynecol Oncol 104:535–539

    Article  PubMed  Google Scholar 

  34. Lai JC, Chen YW, Chio HL et al (2005) Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer. Int J Cancer 117:974–980

    Article  CAS  PubMed  Google Scholar 

  35. Kim DH, Kim JS, Ji YI et al (2003) Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63:3743–3746

    CAS  PubMed  Google Scholar 

  36. Gabriel HE, Crott JW, Ghandour H et al (2006) Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic damage in the buccal mucosa of healthy adults. Am J Clin Nutr 83:835–841

    CAS  PubMed  Google Scholar 

  37. Zhang S, Hankinson SE, Hunter DJ et al (2005) Folate intake and risk of breast cancer characterized by hormone receptor status. Cancer Epidemiol Biomarkers Prev 14:2004–2008

    Article  CAS  PubMed  Google Scholar 

  38. van Engeland M, Weijenberg MP, Roemen GM et al (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 63:3133–3137

    PubMed  Google Scholar 

  39. Friso S, Lamon-Fava S, Jang H et al (2007) Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women. Br J Nutr 97:617–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to all participating patients and our valued colleagues in Day General Hospital. We are also grateful to researches affaire of National Nutrition & Food Technology Research Institute, Shaheed Beheshti University of Medical Sciences, Iran, for providing financial support to conduct this study. The authors are grateful to Dr. Sonia Ijadi-Maghsoudi and Dr. Mohammad-Amin Tabatabaifar for their valuable reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeed Pirouzpanah or Parvin Mehdipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirouzpanah, S., Taleban, F.A., Atri, M. et al. The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes Control 21, 2101–2111 (2010). https://doi.org/10.1007/s10552-010-9629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-010-9629-z

Keywords

Navigation