Skip to main content

Advertisement

Log in

Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease in DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk.

Methods

Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 single-nucleotide polymorphisms (SNPs) in nine DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer.

Results

There were no associations between these SNPs and overall risk of prostate cancer. Risks by genotype also did not vary by smoking or by family history of prostate cancer. Although two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced-stage tumors when comparing homozygous men carrying the minor versus major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors.

Conclusion

Overall, this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability, a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene–environment interactions may be warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society (2009) Cancer facts and figures: 2009. American Cancer Society, Atlanta

    Google Scholar 

  2. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85

    Article  CAS  PubMed  Google Scholar 

  3. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al (2000) Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89(1):123–134

    Article  CAS  PubMed  Google Scholar 

  4. Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ (2005) Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 41(1):61–70

    Article  CAS  PubMed  Google Scholar 

  5. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Oxidative stress in prostate cancer. Cancer Lett 282(2):125–136

    Article  CAS  PubMed  Google Scholar 

  6. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  7. Sikka SC (2003) Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Curr Med Chem 10(24):2679–2692

    Article  CAS  PubMed  Google Scholar 

  8. Rybicki BA, Rundle A, Savera AT, Sankey SS, Tang D (2004) Polycyclic aromatic hydrocarbon-DNA adducts in prostate cancer. Cancer Res 64(24):8854–8859

    Article  CAS  PubMed  Google Scholar 

  9. Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A (2006) Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett 239(2):157–167

    Article  CAS  PubMed  Google Scholar 

  10. Tang D, Liu JJ, Rundle A, Neslund-Dudas C, Savera AT, Bock CH et al (2007) Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiol Biomarkers Prev 16(4):803–808

    Article  CAS  PubMed  Google Scholar 

  11. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34

    Article  CAS  PubMed  Google Scholar 

  12. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289

    Article  CAS  PubMed  Google Scholar 

  13. Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11:S52–S59

    CAS  PubMed  Google Scholar 

  14. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  CAS  PubMed  Google Scholar 

  15. Hu JJ, Mohrenweiser HW, Bell DA, Leadon SA, Miller MS (2002) Symposium overview: genetic polymorphisms in DNA repair and cancer risk. Toxicol Appl Pharmacol 185(1):64–73

    Article  CAS  PubMed  Google Scholar 

  16. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530

    CAS  PubMed  Google Scholar 

  17. Hu JJ, Hall MC, Grossman L, Hedayati M, McCullough DL, Lohman K et al (2004) Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 64(3):1197–1201

    Article  CAS  PubMed  Google Scholar 

  18. Hung RJ, Hall J, Brennan P, Boffetta P (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162(10):925–942

    Article  PubMed  Google Scholar 

  19. Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA et al (2002) Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62(8):2253–2257

    CAS  PubMed  Google Scholar 

  20. van Gils CH, Bostick RM, Stern MC, Taylor JA (2002) Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 11(11):1279–1284

    PubMed  Google Scholar 

  21. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS (2004) DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13(1):23–29

    Article  CAS  PubMed  Google Scholar 

  22. Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P et al (2005) Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 14(7):1703–1709

    Article  CAS  PubMed  Google Scholar 

  23. Nock NL, Cicek MS, Li L, Liu X, Rybicki BA, Moreira A et al (2006) Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis 27(9):1842–1848

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Ambrosone CB, Lee J, Sellers TA, Pow-Sang J, Park JY (2006) Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. J Urol 175(1):108–112 (discussion 12)

    Article  CAS  PubMed  Google Scholar 

  25. Hirata H, Hinoda Y, Tanaka Y, Okayama N, Suehiro Y, Kawamoto K et al (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43(2):231–237

    Article  CAS  PubMed  Google Scholar 

  26. Hooker S, Bonilla C, Akereyeni F, Ahaghotu C, Kittles RA (2008) NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis 11(4):349–356

    Article  CAS  PubMed  Google Scholar 

  27. Stanford JL, Wicklund KG, McKnight B, Daling JR, Brawer MK (1999) Vasectomy and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 8(10):881–886

    CAS  PubMed  Google Scholar 

  28. Agalliu I, Salinas CA, Hansten PD, Ostrander EA, Stanford JL (2008) Statin use and risk of prostate cancer: results from a population-based epidemiologic study. Am J Epidemiol 168(3):250–260

    Article  PubMed  Google Scholar 

  29. Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10(6):591–597

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Isolation of high-molecular weight DNA from mammalian cells. In: Nolan C (ed) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Plainview, pp 9.16–99.9

    Google Scholar 

  31. Ott J (1999) Analysis of human genetic linkage. John Hopkins University Press, Baltimore

    Google Scholar 

  32. Breslow NE, Day NE (1980) Statistical methods in cancer research, volume 1—the analysis of case-control studies. International Agency for Research on Cancer, Lyon

    Google Scholar 

  33. Klienbaum DG, Nizam A, Kupper L, Muller KE (2007) Applied regression analysis and multivariate methods, 4th edn. Duxbury Press, Pacific Grove

    Google Scholar 

  34. Dubin N, Pasternack BS (1986) Risk assessment for case-control subgroups by polychotomous logistic regression. Am J Epidemiol 123(6):1101–1117

    CAS  PubMed  Google Scholar 

  35. The Breast Cancer Linkage C (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91(15):1310–1316

    Article  Google Scholar 

  36. Johannsson O, Loman N, Moller T, Kristoffersson U, Borg A, Olsson H (1999) Incidence of malignant tumours in relatives of BRCA1 and BRCA2 germline mutation carriers. Eur J Cancer 35(8):1248–1257

    Article  CAS  PubMed  Google Scholar 

  37. Eerola H, Pukkala E, Pyrhonen S, Blomqvist C, Sankila R, Nevanlinna H (2001) Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families (Finland). Cancer Causes Control 12:739–746

    Article  CAS  PubMed  Google Scholar 

  38. Tulinius H, Olafsdottir GH, Sigvaldason H, Arason A, Barkardottir RB, Egilsson V et al (2002) The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 39(7):457–462

    Article  CAS  PubMed  Google Scholar 

  39. Bermejo JL, Hemminki K (2004) Risk of cancer at sites other than the breast in Swedish families eligible for BRCA1 or BRCA2 mutation testing. Ann Oncol 15:1834–1841

    Article  Google Scholar 

  40. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, Hoogerbrugge N, Verhoef S (2005) Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711–719

    Article  PubMed  Google Scholar 

  41. Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfjörd JE et al (1997) BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 75:758–761

    Article  CAS  PubMed  Google Scholar 

  42. Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M et al (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336(20):1401–1408

    Article  CAS  PubMed  Google Scholar 

  43. Kirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C et al (2004) BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 10:2918–2921

    Article  CAS  PubMed  Google Scholar 

  44. Agalliu I, Gern R, Leanza S, Burk RD (2009) Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15(3):1112–1120

    Article  CAS  PubMed  Google Scholar 

  45. Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P et al (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72:1–12

    Article  CAS  PubMed  Google Scholar 

  46. Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA et al (2007) Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97(6):826–831

    Article  CAS  PubMed  Google Scholar 

  47. Ostrander EA, Udler MS (2008) The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 17(8):1843–1848

    Article  CAS  PubMed  Google Scholar 

  48. Braithwaite E, Wu X, Wang Z (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis 19(7):1239–1246

    Article  CAS  PubMed  Google Scholar 

  49. Platz EA, De Marzo AM, Giovannucci E (2004) Prostate cancer association studies: pitfalls and solutions to cancer misclassification in the PSA era. J Cell Biochem 91(3):553–571

    Article  CAS  PubMed  Google Scholar 

  50. Kondylis FI, Moriarty RP, Bostwick D, Schellhammer PF (2003) Prostate cancer grade assignment: the effect of chronological, interpretive and translation bias. J Urol 170(4 Pt 1):1189–1193

    Article  PubMed  Google Scholar 

  51. Albertsen PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PDH (2005) Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst 97(17):1248–1252

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the men who participated in these studies for their time, effort and cooperation, and interviewers for their help with data collection. This work was supported by NIH grants R01-CA56678, R01-CA092579 and contract N01-CN-05230 from the National Cancer Institute. Additional support was provided by the Fred Hutchinson Cancer Research Center and the Intramural Program of the National Human Genome Research Institute. Ilir Agalliu was supported by funds from the Albert Einstein College of Medicine of Yeshiva University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet L. Stanford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agalliu, I., Kwon, E.M., Salinas, C.A. et al. Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 21, 289–300 (2010). https://doi.org/10.1007/s10552-009-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-009-9461-5

Keywords

Navigation