Skip to main content

Advertisement

Log in

Use of biomarkers in epidemiologic studies: minimizing the influence of measurement error in the study design and analysis

  • Review Article
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

The inclusion of biomarkers measured on the continuous scale, such as endogenous sex hormones or antioxidant levels, has become common in epidemiologic studies, and introduces additional sources of error that are specific to biomarkers. This includes error associated with specimen collection, processing, and storage; laboratory error (both within and between batch); and variability in the biomarker levels over time within an individual. In this review, we discuss and recommend study design and analytic strategies to deal with these sources of measurement error. In particular we describe methods to prevent or minimize some sources of error through appropriate sample collection and storage, communication with the laboratory, proper batching of samples, and participant matching. We also discuss how to quantify error related to biomarkers, focusing on issues of quality control, pilot studies, and how to measure within-person stability over time. Further, we discuss analytic issues for dealing with laboratory and within-person variability. Finally we recommend that journals standardize the reporting of biomarker assays in scientific manuscripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Vineis P (1997) Sources of variation in biomarkers. IARC Sci Publ: 59–71

  2. Bolelli G, Muti P, Micheli A, et al (1995) Validity for epidemiological studies of long-term cryoconservation of steroid and protein hormones in serum and plasma. Cancer Epidemiol Biomarkers Prev 4:509–513

    PubMed  CAS  Google Scholar 

  3. Armstrong BK, White E, Saracci R (1992) Principles of exposure measurement in epidemiology. Monog Epidemiol Biostatist 21: 252–258

    Google Scholar 

  4. White E (1997) Effects of biomarker measurement error on epidemiological studies. IARC Sci Publ: 73–93

  5. Falk RT, Gail MH, Fears TR, et al (1999) Reproducibility and validity of radioimmunoassays for urinary hormones and metabolites in pre- and postmenopausal women. Cancer Epidemiol Biomarkers Prev 8:567–577

    PubMed  CAS  Google Scholar 

  6. Gail MH, Fears TR, Hoover RN, et al (1996) Reproducibility studies and interlaboratory concordance for assays of serum hormone levels: estrone, estradiol, estrone sulfate, and progesterone. Cancer Epidemiol Biomarkers Prev 5:835–844

    PubMed  CAS  Google Scholar 

  7. McShane LM, Dorgan JF, Greenhut S, Damato JJ (1996) Reliability and validity of serum sex hormone measurements. Cancer Epidemiol Biomarkers Prev 5:923–928

    PubMed  CAS  Google Scholar 

  8. Rinaldi S, Dechaud H, Biessy C, et al (2001) Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood androgens and estrogens in postmenopausal women. Cancer Epidemiol Biomarkers Prev 10:757–765

    PubMed  CAS  Google Scholar 

  9. Hankinson SE, Manson JE, London SJ, Willett WC, Speizer FE (1994) Laboratory reproducibility of endogenous hormone levels in postmenopausal women. Cancer Epidemiol Biomarkers Prev 3:51–56

    PubMed  CAS  Google Scholar 

  10. Tworoger SS, Yasui Y, Chang L, Stanczyk FZ, McTiernan A (2004) Specimen allocation in longitudinal biomarker studies: controlling subject-specific effects by design. Cancer Epidemiol Biomarkers Prev 13:1257–1260

    Article  PubMed  Google Scholar 

  11. Hankinson SE, Manson JE, Spiegelman D, Willett WC, Longcope C, Speizer FE (1995) Reproducibility of plasma hormone levels in postmenopausal women over a 2–3-year period. Cancer Epidemiol Biomarkers Prev 4:649–654

    PubMed  CAS  Google Scholar 

  12. Michaud DS, Manson JE, Spiegelman D, et al (1999) Reproducibility of plasma and urinary sex hormone levels in premenopausal women over a one-year period. Cancer Epidemiol Biomarkers Prev 8:1059–1064

    PubMed  CAS  Google Scholar 

  13. Landi MT, Caporaso N (1997) Sample collection, processing and storage. IARC Sci Publ: 223–236

  14. Holland NT, Smith MT, Eskenazi B, Bastaki M (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234

    Article  PubMed  CAS  Google Scholar 

  15. Evans MJ, Livesey JH, Ellis MJ, Yandle TG (2001) Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin Biochem 34:107–112

    Article  PubMed  CAS  Google Scholar 

  16. Flower L, Ahuja RH, Humphries SE, Mohamed-Ali V (2000) Effects of sample handling on the stability of interleukin 6, tumour necrosis factor-alpha and leptin. Cytokine 12:1712–1716

    Article  PubMed  CAS  Google Scholar 

  17. Palmer-Toy DE, Szczepiorkowski ZM, Shih V, Van Cott EM (2001) Compatibility of the Abbott IMx homocysteine assay with citrate-anticoagulated plasma and stability of homocysteine in citrated whole blood. Clin Chem 47:1704–1707

    PubMed  CAS  Google Scholar 

  18. Hunter DJ (1998) Biochemical indicators of dietary intake. In: Willett WC (ed), Nutritional Epidemiology, Monographs in epidemiology and biostatistics, vol 30. Oxford University Press, New York, pp 204–207

    Google Scholar 

  19. Hankinson SE, Willett WC, Manson JE, et al (1995) Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst 87:1297–1302

    PubMed  CAS  Google Scholar 

  20. Hankinson SE, Willett WC, Colditz GA, et al (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396

    Article  PubMed  CAS  Google Scholar 

  21. Hankinson SE, London SJ, Chute CG, et al (1989) Effect of transport conditions on the stability of biochemical markers in blood. Clin Chem 35:2313–2316

    PubMed  CAS  Google Scholar 

  22. Pischon T, Hotamisligil GS, Rimm EB (2003) Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin Chem 49:650–652

    Article  PubMed  CAS  Google Scholar 

  23. Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE (2004) Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomarkers Prev 13:936–943

    PubMed  CAS  Google Scholar 

  24. Comstock GW, Alberg AJ, Helzlsouer KJ (1993) Reported effects of long-term freezer storage on concentrations of retinol, beta-carotene, and alpha-tocopherol in serum or plasma summarized. Clin Chem 39:1075–1078

    PubMed  CAS  Google Scholar 

  25. Mathews-Roth MM, Stampfer MJ (1984) Some factors affecting determination of carotenoids in serum. Clin Chem 30:459–461

    PubMed  CAS  Google Scholar 

  26. Woodrum D, French C, Shamel LB (1996) Stability of free prostate-specific antigen in serum samples under a variety of sample collection and sample storage conditions. Urology 48:33–39

    Article  PubMed  CAS  Google Scholar 

  27. Wilcox AJ (1995) Molecular epidemiology: collision of two cultures. Epidemiology 6:561–562

    PubMed  CAS  Google Scholar 

  28. Stanczyk FZ, Cho MM, Endres DB, Morrison JL, Patel S, Paulson RJ (2003) Limitations of direct estradiol and testosterone immunoassay kits. Steroids 68:1173–1178

    Article  PubMed  CAS  Google Scholar 

  29. Stanczyk FZ (2004) Extraction/chromatographic testosterone RIA can be used as the “gold standard” for determining the reliability of direct testosterone immunoassay measurements. Clin Chem 50:2219–2220; author reply 2220–2221

    Article  PubMed  CAS  Google Scholar 

  30. Kark JD, Smith AH, Switzer BR, Hames CG (1981) Serum vitamin A (retinol) and cancer incidence in Evans County, Georgia. J Natl Cancer Inst 66:7–16

    PubMed  CAS  Google Scholar 

  31. Willett WC, Colditz GA (1998) Vitamin A and lung cancer. In: Willett WC (ed), Nutritional epidemiology. Oxford University Press, New York, pp 357–376

    Google Scholar 

  32. Hankinson SE, Schernhammer ES (2003) Insulin-like growth factor and breast cancer risk: evidence from observational studies. Breast Dis 17:27–40

    PubMed  CAS  Google Scholar 

  33. Fletcher O, Gibson L, Johnson N, et al (2005) Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: a systematic review. Cancer Epidemiol Biomarkers Prev 14:2–19

    PubMed  CAS  Google Scholar 

  34. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  PubMed  CAS  Google Scholar 

  35. Rosner B (1995) Fundamentals of biostatistics. Duxbury Press, Bemont (CA)

    Google Scholar 

  36. Chinn S (1990) The assessment of methods of measurement. Stat Med 9:351–362

    PubMed  CAS  Google Scholar 

  37. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865

    Article  PubMed  CAS  Google Scholar 

  38. Tworoger SS, Eliassen AH, Rosner B, Sluss P, Hankinson SE (2004) Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res 64:6814–6819

    Article  PubMed  CAS  Google Scholar 

  39. Taioli E, Bonassi S (2002) Methodolgical issues in pooled analysis of biomarker studies. Mutat Res 512:85–92

    Article  PubMed  CAS  Google Scholar 

  40. Key T, Appleby P, Barnes I, Reeves G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94:606–616

    PubMed  CAS  Google Scholar 

  41. Armstrong BG (1990) The effects of measurement errors on relative risk regressions. Am J Epidemiol 132:1176–1184

    PubMed  CAS  Google Scholar 

  42. Rosner B, Willett WC, Spiegelman D (1989) Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med 8:1051–1069; discussion 1071–1073

    PubMed  CAS  Google Scholar 

  43. Rosner B, Spiegelman D, Willett WC (1990) Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. Am J Epidemiol 132:734–745

    PubMed  CAS  Google Scholar 

  44. Rosner B, Spiegelman D, Willett WC (1992) Correction of logistic regression relative risk estimates and confidence intervals for random within-person measurement error. Am J Epidemiol 136:1400–1413

    PubMed  CAS  Google Scholar 

  45. Spiegelman D, Schneeweiss S, McDermott A (1997) Measurement error correction for logistic regression models with an “alloyed gold standard”. Am J Epidemiol 145:184–196

    PubMed  CAS  Google Scholar 

  46. Moher D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285:1987–1991

    Article  PubMed  CAS  Google Scholar 

  47. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 354:1896–1900

    Article  PubMed  CAS  Google Scholar 

  48. Stroup DF, Berlin JA, Morton SC, et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Financial support: Support for this project was from NIH grants P01 CA87969, CA67262, CA50385, and CA49449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Hankinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tworoger, S.S., Hankinson, S.E. Use of biomarkers in epidemiologic studies: minimizing the influence of measurement error in the study design and analysis. Cancer Causes Control 17, 889–899 (2006). https://doi.org/10.1007/s10552-006-0035-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-006-0035-5

Keywords

Navigation