Skip to main content

Advertisement

Log in

Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Extravasation of triple-negative (TN) metastatic breast cancer (BC) cells through the brain endothelium (BE) is a critical step in brain metastasis (BM). During extravasation, metastatic cells induce alteration in the inter-endothelial junctions and transmigrate through the endothelial barrier. Transmigration of metastatic cells is mediated by the upregulation of cyclooxygenase-2 (COX-2) that induces matrix metalloproteinase-1 (MMP-1) capable of degrading inter-endothelial junctional proteins. Despite their important role in BM, the molecular mechanisms upregulating COX-2 and MMP-1 in TNBC cells remain poorly understood. In this study, we unraveled a synergistic effect of a pair of micro-RNAs (miR-26b-5p and miR-101-3p) on COX-2 expression and the brain transmigration ability of BC cells.

Methods

Using a gain-and-loss of function approach, we modulated levels of miR-26b-5p and miR-101-3p in two TNBC cell lines (the parental MDA-MB-231 and its brain metastatic variant MDA-MB-231-BrM2), and examined the resultant effect on COX-2/MMP-1 expression and the transmigration of cancer cells through the BE.

Results

We observed that the dual inhibition of miR-26b-5p and miR-101-3p in BC cells results in higher increase of COX-2/MMP-1 expression and a higher trans-endothelial migration compared to either micro-RNA alone. The dual restoration of both micro-RNAs exerted a synergistic inhibition on COX-2/MMP-1 by targeting COX-2 and potentiated the suppression of trans-endothelial migration compared to single micro-RNA.

Conclusion

These findings provide new insights on a synergism between miR-26-5p and miR-101-3p in regulating COX-2 in metastatic TNBC cells and shed light on miR-26-5p and miR-101-3p as prognostic and therapeutic targets that can be exploited to predict or prevent BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary material.

References

  1. Kodack DP, Askoxylakis V, Ferraro GB, Fukumura D, Jain RK (2015) Emerging strategies for treating brain metastases from breast cancer. Cancer Cell 27:163–175. https://doi.org/10.1016/j.ccell.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277. https://doi.org/10.1200/JCO.2009.25.9820

    Article  PubMed  Google Scholar 

  3. Aversa C, Rossi V, Geuna E, Martinello R, Milani A, Redana S et al (2014) Metastatic breast cancer subtypes and central nervous system metastases. Breast 23:623–628. https://doi.org/10.1016/j.breast.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  4. Uhm JE, Park YH, Yi SY, Cho EY, Choi YL, Lee SJ et al (2009) Treatment outcomes and clinicopathologic characteristics of triple-negative breast cancer patients who received platinum-containing chemotherapy. Int J Cancer 124:1457–1462. https://doi.org/10.1002/ijc.24090

    Article  CAS  PubMed  Google Scholar 

  5. Custódio-Santos T, Videira M, Brito MA (2017) Brain metastasization of breast cancer. Biochim Biophys Acta 1868:132–147. https://doi.org/10.1016/j.bbcan.2017.03.004

    Article  CAS  Google Scholar 

  6. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  7. Bauer HS, Krizbai IA, Bauer H, Traweger A (2014) “You Shall Not Pass”—tight junctions of the blood brain barrier. Front Neurosci 8:392. https://doi.org/10.3389/fnins.2014.00392

    PubMed  PubMed Central  Google Scholar 

  8. Rodriguez PL, Jiang S, Fu Y, Avraham S, Avraham HK (2014) The proinflammatory peptide substance P promotes blood–brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer 134:1034–1044. https://doi.org/10.1002/ijc.28433

    Article  CAS  PubMed  Google Scholar 

  9. Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S (2014) Angiopoietin-2 mediates blood–brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol 232:369–381. https://doi.org/10.1002/path.4304

    Article  CAS  PubMed  Google Scholar 

  10. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284. https://doi.org/10.1074/jbc.M210063200

    Article  CAS  PubMed  Google Scholar 

  11. Wu K, Fukuda K, Xing F, Zhang Y, Sharma S, Liu Y et al (2015) Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem 290:9842–9854. https://doi.org/10.1074/jbc.M114.602185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bos PD, Zhang XHF, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. https://doi.org/10.1038/nature08021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, Palmieri D et al (2012) The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 12:583. https://doi.org/10.1186/1471-2407-12-583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  15. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  16. Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45. https://doi.org/10.4331/wjbc.v8.i1.45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kulyte A, Belarbi Y, Lorente-Cebrian S, Bambace C, Arner E, Daub CO et al (2014) Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 63:1248–1258. https://doi.org/10.2337/db13-0702

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Zhu W, Wang Z, Yuan W, Sun Y, Liu H et al (2015) Combinatorial microRNAs suppress hypoxia-induced cardiomyocytes apoptosis. Cell Physiol Biochem 37:921–932. https://doi.org/10.1159/000430219

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Pham VVH, Liu L, Xu T, Truong B, Li J et al (2019) Identifying miRNA synergism using multiple-intervention causal inference. BMC Bioinform 20:613. https://doi.org/10.1186/s12859-019-3215-5

    Article  CAS  Google Scholar 

  20. Vandenwijngaert S, Ledsky CD, Agha O, Wu C, Hu D, Bagchi A et al (2018) MicroRNA-425 and microRNA-155 cooperatively regulate atrial natriuretic peptide expression and cGMP production. PLoS ONE 13:e0196697. https://doi.org/10.1371/journal.pone.0196697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Zhao W, Yuan Y, Bai Y, Sun Y, Zhu W et al (2017) MicroRNAs tend to synergistically control expression of genes encoding extensively-expressed proteins in humans. PeerJ 5:e3682. https://doi.org/10.7717/peerj.3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu W, Zhao Y, Xu Y, Sun Y, Wang Z, Yuan W et al (2013) Dissection of protein interactomics highlights microRNA synergy. PLoS ONE 8:e63342. https://doi.org/10.1371/journal.pone.0063342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Li H, Zhao C, Jia H (2018) MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma. Mol Cell Biochem 448:61–69. https://doi.org/10.1007/s11010-018-3313-0

    Article  CAS  PubMed  Google Scholar 

  24. Cao J, Guo T, Dong Q, Zhang J, Li Y (2015) miR-26b is downregulated in human tongue squamous cell carcinoma and regulates cell proliferation and metastasis through a COX-2-dependent mechanism. Oncol Rep 33:974–980. https://doi.org/10.3892/or.2014.3648

    Article  CAS  PubMed  Google Scholar 

  25. Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G et al (2009) MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315:1439–1447. https://doi.org/10.1016/j.yexcr.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Kong X, Zhang J, Luo Q, Li X, Fang L (2013) MiRNA-26b inhibits proliferation by targeting PTGS2 in breast cancer. Cancer Cell Int 13:7. https://doi.org/10.1186/1475-2867-13-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia M, Duan ML, Tong JH, Xu JG (2015) MiR-26b suppresses tumor cell proliferation, migration and invasion by directly targeting COX-2 in lung cancer. Eur Rev Med Pharmacol Sci 19(24):4728–4737

    CAS  PubMed  Google Scholar 

  28. Harati R, Mohammad MG, Tlili A, El-Awady RA, Hamoudi R (2020) Loss of miR-101-3p promotes transmigration of metastatic breast cancer cells through the brain endothelium by inducing COX-2/MMP1 signaling. Pharmaceuticals 13:144. https://doi.org/10.3390/ph13070144

    Article  CAS  PubMed Central  Google Scholar 

  29. Xing F, Sharma S, Liu Y, Mo YY, Wu K, Zhang YY et al (2015) miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α. Oncogene 34:4890–4900. https://doi.org/10.1038/onc.2014.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10:16. https://doi.org/10.1186/2045-8118-10-16

    Article  PubMed  PubMed Central  Google Scholar 

  31. Poller B, Gutmann H, Krähenbühl S, Weksler B, Romero I, Couraud P-O et al (2008) The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 107:1358–1368. https://doi.org/10.1111/j.1471-4159.2008.05730.x

    Article  CAS  PubMed  Google Scholar 

  32. Harati R, Benech H, Villégier AS, Mabondzo A (2013) P-Glycoprotein, breast cancer resistance protein, organic anion transporter 3, and transporting peptide 1a4 during blood-brain barrier maturation: involvement of wnt/β-catenin and endothelin-1 signaling. Mol Pharm 10:1566–1580. https://doi.org/10.1021/mp300334r

    Article  CAS  PubMed  Google Scholar 

  33. Harati R, Villégier A-S, Banks WA, Mabondzo A (2012) Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity. J Neuroinflammation 9:765. https://doi.org/10.1186/1742-2094-9-273

    Article  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Harati R, Hafezi S, Mabondzo A, Tlili A (2020) Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. PLoS ONE 15:e0239292–e0239292. https://doi.org/10.1371/journal.pone.0239292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodrigues-Ferreira S, Abdelkarim M, Dillenburg-Pilla P, Luissint AC, di Tommaso A, Deshayes F et al (2012) Angiotensin II facilitates breast cancer cell migration and metastasis. PLoS ONE 7:e35667. https://doi.org/10.1371/journal.pone.0035667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu J, Zhang N, Chou JH, Dong HJ, Lin SF, Ulrich-Merzenich GS et al (2016) Drug combination in vivo using combination index method: taxotere and T607 against colon carcinoma HCT-116 xenograft tumor in nude mice. Synergy 3:15–30. https://doi.org/10.1016/j.synres.2016.06.001

    Article  Google Scholar 

  38. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621. https://doi.org/10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  39. Chou TC (2018) The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 7:49–50. https://doi.org/10.1016/j.synres.2018.04.001

    Article  Google Scholar 

  40. Yadav SS, Li J, Stockert JA, O’Connor J, Herzog B, Elaiho C et al (2016) Combination effect of therapies targeting the PI3K- and AR-signaling pathways in prostate cancer. Oncotarget 7:76181–76196. https://doi.org/10.18632/oncotarget.12771

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lai X, Eberhardt M, Schmitz U, Vera J (2019) Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 47:7753–7766. https://doi.org/10.1093/nar/gkz638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M et al (2015) Transfection of microRNA mimics should be used with caution. Front Genet. https://doi.org/10.3389/fgene.2015.00340

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mazhar D, Ang R, Waxman J (2006) COX inhibitors and breast cancer. Br J Cancer 94:346–350. https://doi.org/10.1038/sj.bjc.6602942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: a review. J Cell Physiol 234:5683–5699. https://doi.org/10.1002/jcp.27411

    Article  CAS  PubMed  Google Scholar 

  45. Boland GP, Butt IS, Prasad R, Knox WF, Bundred NJ (2004) COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 90:423–429. https://doi.org/10.1038/sj.bjc.6601534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Timoshenko AV, Xu G, Chakrabarti S, Lala PK, Chakraborty C (2003) Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res 289:265–274. https://doi.org/10.1016/S0014-4827(03)00269-6

    Article  CAS  PubMed  Google Scholar 

  47. Majumder M, Xin X, Liu L, Girish GV, Lala PK (2014) Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci 105:1142–1151. https://doi.org/10.1111/cas.12475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang SH, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC et al (2004) Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci 101(2):591–596. https://doi.org/10.1073/pnas.2535911100

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Hao Q, Cao W, Vadgama JV, Wu Y (2018) Celecoxib in breast cancer prevention and therapy. Cancer Manag Res 10:4653–4667. https://doi.org/10.2147/CMAR.S178567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Denkert C, Winzer KJ, Müller BM, Weichert W, Pest S, Köbel M et al (2003) Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer 97:2978–2987. https://doi.org/10.1002/cncr.11437

    Article  CAS  PubMed  Google Scholar 

  51. Shim JY, An HJ, Lee YH, Kim SK, Lee KP, Lee KS (2003) Overexpression of cyclooxygenase-2 Is associated with breast carcinoma and its poor prognostic factors. Mod Pathol 16:1199–1204. https://doi.org/10.1097/01.MP.0000097372.73582.CB

    Article  PubMed  Google Scholar 

  52. Tan KB, Yong WP, Putti TC (2004) Cyclooxygenase-2 expression: a potential prognostic and predictive marker for high-grade ductal carcinoma in situ of the breast. Histopathology 44:24–28. https://doi.org/10.1111/j.1365-2559.2004.01774.x

    Article  PubMed  Google Scholar 

  53. Perrone G, Santini D, Vincenzi B, Zagami M, La Cesa A, Bianchi A et al (2005) COX-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinicopathological features. Histopathology 46:561–568. https://doi.org/10.1111/j.1365-2559.2005.02132.x

    Article  CAS  PubMed  Google Scholar 

  54. Harris RE (2014) Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol 5:677. https://doi.org/10.5306/wjco.v5.i4.677

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang Z, Chen F, Shang L (2018) Advances in antitumor effects of NSAIDs. Cancer Manag Res 10:4631–4640. https://doi.org/10.2147/CMAR.S175212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winer A, Adams S, Mignatti P (2018) Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther 17:1147–1155. https://doi.org/10.1158/1535-7163.MCT-17-0646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198. https://doi.org/10.1158/0008-5472.CAN-06-3316

    Article  CAS  PubMed  Google Scholar 

  58. He Y, Liu H, Jiang L, Rui B, Mei J, Xiao H (2019) miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-β1-JNK signaling pathway. Front Pharmacol 9:1509. https://doi.org/10.3389/fphar.2018.01509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang XJ, Yan ZJ, Luo GC, Chen YY, Bai PM (2020) miR-26 suppresses renal cell cancer via down-regulating coronin-3. Mol Cell Biochem 463:137–146. https://doi.org/10.1007/s11010-019-03636-2

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Liang Y, Lv H, Meng H, Xiong G, Guan X et al (2017) miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway. Gene 625:1–9. https://doi.org/10.1016/j.gene.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  61. Zhu L, Chen Y, Nie K, Xiao Y, Yu H (2018) MiR-101 inhibits cell proliferation and invasion of pancreatic cancer through targeting STMN1. Cancer Biomark 23:301–309. https://doi.org/10.3233/CBM-181675

    Article  CAS  PubMed  Google Scholar 

  62. Liu P, Ye F, Xie X, Li X, Tang H, Li S et al (2016) mir-101–3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget 7(23):35188–35198. https://doi.org/10.18632/oncotarget.9072

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Tang H, Chen J, Song C, Yang L, Liu P et al (2015) MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer. Oncotarget 6:20070–20083. https://doi.org/10.18632/oncotarget.4039

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang X, Gao D, Fang K, Guo Z, Li L (2019) Med19 is targeted by miR-101–3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett 444:105–115. https://doi.org/10.1016/j.canlet.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Shao MY, Zou SC, Xiao ZF, Chen ZC (2019) MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44. J Neurooncol 141:19–30. https://doi.org/10.1007/s11060-018-2973-7

    Article  CAS  PubMed  Google Scholar 

  66. Han L, Chen W, Xia Y, Song Y, Zhao Z, Cheng H et al (2018) MiR-101 inhibits the proliferation and metastasis of lung cancer by targeting zinc finger E-box binding homeobox1. Am J Transl Res 10(4):1172–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan S, Shan X, Chen K, Liu Y, Yu G, Chen Q et al (2018) LINC00052/miR-101-3p axis inhibits cell proliferation and metastasis by targeting SOX9 in hepatocellular carcinoma. Gene 679:138–149. https://doi.org/10.1016/j.gene.2018.08.038

    Article  CAS  PubMed  Google Scholar 

  68. Bao RF, Shu YJ, Hu YP, Wang XA, Zhang F, Liang HB et al (2016) miR-101 targeting ZFX suppresses tumor proliferation and metastasis by regulating the MAPK/Erk and Smad pathways in gallbladder carcinoma. Oncotarget 7:22339–22354. https://doi.org/10.18632/oncotarget.7970

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ding Q, Wang Y, Zuo Z, Gong Y, Krishnamurthy S, Li CW et al (2018) Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Hum Pathol 77:121–129. https://doi.org/10.1016/j.humpath.2018.04.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Terry Fox Foundation’s International Run Program (Grant ref. I1032). R Hamoudi is funded by Al-Jalila Foundation (Grant No: AJF201741). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RH designed the study, performed research, analyzed, and interpreted the data and wrote the manuscript; AT, MM, and GK contributed to the luciferase reporter assay; AT, AM, GK, and RH provided support with analysis of data and interpretation of results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rania Harati.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest/competing interests.

Ethical approval

All experiments were approved by the University of Sharjah animal care and use committee and conducted according to the UOS directives for animal care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harati, R., Mabondzo, A., Tlili, A. et al. Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat 187, 695–713 (2021). https://doi.org/10.1007/s10549-021-06255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06255-y

Keywords