Skip to main content

Advertisement

Log in

SETD2 alterations and histone H3K36 trimethylation in phyllodes tumor of breast

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

SETD2 is one of the key epigenetic regulatory genes involved in histone modifications. Its alterations were potentially oncogenic and commonly found in cancers. Interestingly, SETD2 is one of the most frequent mutated genes found exclusively in phyllodes tumor of the breast (PT). However, little has been done to further characterize SETD2 alterations in PT.

Methods

In this study, we examined the alterations of SETD2 gene and protein expression in a large cohort of PTs. Their correlations with SETD2 downstream target, H3K36me3 expression, and clinicopathologic features in PT were also assessed.

Results

SETD2 mutation was found in 15.9% of our cases and was mostly predicted to be damaging mutations. Interestingly, SETD2 mutations were associated with lower H3K36me3 expression, particularly those with damaging mutations (p = .041). Neither SETD2 mutations nor H3K36me3 expression was associated with PT grading and other clinicopathological features. By contrast, the SETD2 protein expression cannot reflect its mutation status and showed a different trend of clinicopathological correlations from H3K36me3.

Conclusions

Our findings may suggest a potential involvement of epigenetic regulation via SETD2 alterations and downstream H3K36me3 on PT development. SETD2 mutations may occur early in the pathogenic process of PTs and its loss per se may not be sufficient for progression to malignancy. Exclusive alterations of SETD2 in PT can be used as markers for the diagnosis of fibroepithelial lesions. The association of H3K36me3 with SETD2 mutations may also indicate the value of evaluation of H3K36me3 expression in the diagnosis of fibroepithelial lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tan J, Ong CK, Lim WK, Ng CC, Thike AA, Ng LM, Rajasegaran V, Myint SS, Nagarajan S, Thangaraju S, Dey S, Nasir ND, Wijaya GC, Lim JQ, Huang D, Li Z, Wong BH, Chan JY, McPherson JR, Cutcutache I, Poore G, Tay ST, Tan WJ, Putti TC, Ahmad BS, Iau P, Chan CW, Tang AP, Yong WS, Madhukumar P, Ho GH, Tan VK, Wong CY, Hartman M, Ong KW, Tan BK, Rozen SG, Tan P, Tan PH, Teh BT (2015) Genomic landscapes of breast fibroepithelial tumors. Nat Genet 47(11):1341–1345. https://doi.org/10.1038/ng.3409

    Article  CAS  PubMed  Google Scholar 

  2. Piscuoglio S, Ng CK, Murray M, Burke KA, Edelweiss M, Geyer FC, Macedo GS, Inagaki A, Papanastasiou AD, Martelotto LG, Marchio C, Lim RS, Ioris RA, Nahar PK, Bruijn ID, Smyth L, Akram M, Ross D, Petrini JH, Norton L, Solit DB, Baselga J, Brogi E, Ladanyi M, Weigelt B, Reis-Filho JS (2016) Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol 238(4):508–518. https://doi.org/10.1002/path.4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cani AK, Hovelson DH, McDaniel AS, Sadis S, Haller MJ, Yadati V, Amin AM, Bratley J, Bandla S, Williams PD, Rhodes K, Liu CJ, Quist MJ, Rhodes DR, Grasso CS, Kleer CG, Tomlins SA (2015) Next-gen sequencing exposes frequent MED12 mutations and actionable therapeutic targets in phyllodes tumors. Mol Cancer Res 13(4):613–619. https://doi.org/10.1158/1541-7786.MCR-14-0578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Dios DA, Levi D, Shah V, Gillett C, Simpson MA, Hanby A, Tomlinson I, Sawyer EJ (2018) MED12, TERT promoter and RBM15 mutations in primary and recurrent phyllodes tumours. Br J Cancer 118(2):277–284. https://doi.org/10.1038/bjc.2017.450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsang JY, Go EM, Tse GM (2015) Identification of clinically relevant alterations in phyllodes tumor of the breast by amplicon-based next-generation sequencing. Breast Cancer Res Treat 151(3):717–719. https://doi.org/10.1007/s10549-015-3396-1

    Article  PubMed  Google Scholar 

  6. Tsang JYS, Hui YK, Lee MA, Lacambra M, Ni YB, Cheung SY, Wu C, Kwong A, Tse GMK (2018) Association of clinicopathological features and prognosis of TERT alterations in phyllodes tumor of breast. Sci Rep 8(1):3881. https://doi.org/10.1038/s41598-018-22232-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshida M, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, Hiraoka N, Sekine S (2015) TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast. Br J Cancer 113(8):1244–1248. https://doi.org/10.1038/bjc.2015.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fahey CC, Davis IJ (2017) SETting the stage for cancer development: SETD2 and the consequences of lost methylation. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026468

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gu L, Wang Q, Sun QY (2010) Histone modifications during mammalian oocyte maturation: dynamics, regulation and functions. Cell Cycle 9(10):1942–1950. https://doi.org/10.4161/cc.9.10.11599

    Article  CAS  PubMed  Google Scholar 

  10. Chen R, Zhao WQ, Fang C, Yang X, Ji M (2020) Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 11(11):3349–3356. https://doi.org/10.7150/jca.38391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skucha A, Ebner J, Grebien F (2019) Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci. https://doi.org/10.3390/ijms20051029

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49. https://doi.org/10.1038/nature12222

    Article  CAS  Google Scholar 

  13. Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS, Prins JF, Lieb JD, Rathmell WK, Davis IJ (2014) Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 24(2):241–250. https://doi.org/10.1101/gr.158253.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vitor AC, Desterro JM, Carmo-Fonseca M, de Almeida SF (2015) Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. https://doi.org/10.7554/eLife.09214

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim JY, Yu JH, Nam SJ, Kim SW, Lee SK, Park WY, Noh DY, Nam DH, Park YH, Han W, Lee JE (2018) Genetic and clinical characteristics of phyllodes tumors of the breast. Transl Oncol 11(1):18–23. https://doi.org/10.1016/j.tranon.2017.10.002

    Article  PubMed  Google Scholar 

  16. Liu SY, Joseph NM, Ravindranathan A, Stohr BA, Greenland NY, Vohra P, Hosfield E, Yeh I, Talevich E, Onodera C, Van Ziffle JA, Grenert JP, Bastian BC, Chen YY, Krings G (2016) Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity. Mod Pathol 29(9):1012–1027. https://doi.org/10.1038/modpathol.2016.97

    Article  CAS  PubMed  Google Scholar 

  17. Md Nasir ND, Ng CCY, Rajasegaran V, Wong SF, Liu W, Ng GXP, Lee JY, Guan P, Lim JQ, Thike AA, Koh VCY, Loke BN, Chang KTE, Gudi MA, Lian DWQ, Madhukumar P, Tan BKT, Tan VKM, Wong CY, Yong WS, Ho GH, Ong KW, International Fibroepithelial C, Tan P, Teh BT, Tan PH (2019) Genomic characterisation of breast fibroepithelial lesions in an international cohort. J Pathol 249 (4):447–460. https://doi.org/https://doi.org/10.1002/path.5333

  18. board Wcote, (ed) (2019) WHO classification of tumours of the Breast, 5th edn. IARC, Lyon

    Google Scholar 

  19. Chang HY, Koh VCY, Md Nasir ND, Ng CCY, Guan P, Thike AA, Teh BT, Tan PH (2020) MED12, TERT and RARA in fibroepithelial tumours of the breast. J Clin Pathol 73(1):51–56. https://doi.org/10.1136/jclinpath-2019-206208

    Article  CAS  PubMed  Google Scholar 

  20. Pareja F, Da Cruz PA, Murray MP, Hoang T, Gularte-Merida R, Brown D, da Silva EM, Sebastiao APM, Giri DD, Weigelt B, Reis-Filho JS, Brogi E (2019) Recurrent MED12 exon 2 mutations in benign breast fibroepithelial lesions in adolescents and young adults. J Clin Pathol 72(3):258–262. https://doi.org/10.1136/jclinpath-2018-205570

    Article  CAS  PubMed  Google Scholar 

  21. Yoon N, Bae GE, Kang SY, Choi MS, Hwang HW, Kim SW, Lee JE, Nam SJ, Gong G, Lee HJ, Bae YK, Lee A, Cho EY (2016) Frequency of MED12 mutations in phyllodes tumors: Inverse correlation with histologic grade. Genes Chromosomes Cancer 55(6):495–504. https://doi.org/10.1002/gcc.22351

    Article  CAS  PubMed  Google Scholar 

  22. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A, Jones DT, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125(5):659–669. https://doi.org/10.1007/s00401-013-1095-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen YB, Xu J, Skanderup AJ, Dong Y, Brannon AR, Wang L, Won HH, Wang PI, Nanjangud GJ, Jungbluth AA, Li W, Ojeda V, Hakimi AA, Voss MH, Schultz N, Motzer RJ, Russo P, Cheng EH, Giancotti FG, Lee W, Berger MF, Tickoo SK, Reuter VE, Hsieh JJ (2016) Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun 7:13131. https://doi.org/10.1038/ncomms13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang KK, McPherson JR, Tay ST, Das K, Tan IB, Ng CC, Chia NY, Zhang SL, Myint SS, Hu L, Rajasegaran V, Huang D, Loh JL, Gan A, Sairi AN, Sam XX, Dominguez LT, Lee M, Soo KC, Ooi LL, Ong HS, Chung A, Chow PK, Wong WK, Selvarajan S, Ong CK, Lim KH, Nandi T, Rozen S, Teh BT, Quek R, Tan P (2016) SETD2 histone modifier loss in aggressive GI stromal tumours. Gut 65(12):1960–1972. https://doi.org/10.1136/gutjnl-2015-309482

    Article  CAS  PubMed  Google Scholar 

  25. Ho TH, Kapur P, Joseph RW, Serie DJ, Eckel-Passow JE, Tong P, Wang J, Castle EP, Stanton ML, Cheville JC, Jonasch E, Brugarolas J, Parker AS (2016) Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Mod Pathol 29(1):34–42. https://doi.org/10.1038/modpathol.2015.123

    Article  CAS  PubMed  Google Scholar 

  26. Walter DM, Venancio OS, Buza EL, Tobias JW, Deshpande C, Gudiel AA, Kim-Kiselak C, Cicchini M, Yates TJ, Feldser DM (2017) Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma. Cancer Res 77(7):1719–1729. https://doi.org/10.1158/0008-5472.CAN-16-2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sim Y, Ng GXP, Ng CCY, Rajasegaran V, Wong SF, Liu W, Guan P, Nagarajan S, Ng WY, Thike AA, Lim JCT, Nasir N, Tan VKM, Madhukumar P, Yong WS, Wong CY, Tan BKT, Ong KW, Teh BT, Tan PH (2019) A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast Fibroepithelial lesions. BMC Med Genomics 12(1):142. https://doi.org/10.1186/s12920-019-0588-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Labbe RM, Holowatyj A, Yang ZQ (2013) Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res 6(1):1–15

    PubMed  PubMed Central  Google Scholar 

  29. Karim RZ, Scolyer RA, Tse GM, Tan PH, Putti TC, Lee CS (2009) Pathogenic mechanisms in the initiation and progression of mammary phyllodes tumours. Pathology 41(2):105–117. https://doi.org/10.1080/00313020802579342

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Fang R, Yue C, Chang G, Li P, Guo Q, Wang J, Zhou A, Zhang S, Fuller GN, Shi X, Huang S (2020) Wnt-Induced Stabilization of KDM4C Is Required for Wnt/beta-Catenin Target Gene Expression and Glioblastoma Tumorigenesis. Cancer Res 80(5):1049–1063. https://doi.org/10.1158/0008-5472.CAN-19-1229

    Article  CAS  PubMed  Google Scholar 

  31. Kim IK, McCutcheon JN, Rao G, Liu SV, Pommier Y, Skrzypski M, Zhang YW, Giaccone G (2019) Acquired SETD2 mutation and impaired CREB1 activation confer cisplatin resistance in metastatic non-small cell lung cancer. Oncogene 38(2):180–193. https://doi.org/10.1038/s41388-018-0429-3

    Article  CAS  PubMed  Google Scholar 

  32. Elgendy M, Fusco JP, Segura V, Lozano MD, Minucci S, Echeveste JI, Gurpide A, Andueza M, Melero I, Sanmamed MF, Ruiz MR, Calvo A, Pascual JI, Velis JM, Minana B, Valle RD, Pio R, Agorreta J, Abengozar M, Colecchia M, Brich S, Renne SL, Guruceaga E, Patino-Garcia A, Perez-Gracia JL (2019) Identification of mutations associated with acquired resistance to sunitinib in renal cell cancer. Int J Cancer 145(7):1991–2001. https://doi.org/10.1002/ijc.32256

    Article  CAS  PubMed  Google Scholar 

  33. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, Mavrommati I, Pai CC, Zalmas LP, Drobnitzky N, Dianov GL, Verrill C, Macaulay VM, Ying S, La Thangue NB, D’Angiolella V, Ryan AJ, Humphrey TC (2015) Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28(5):557–568. https://doi.org/10.1016/j.ccell.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was not supported by any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Tse.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

IRB approval was obtained for this study and a waiver of informed consent was obtained due to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, J.Y., Lai, ST., Ni, YB. et al. SETD2 alterations and histone H3K36 trimethylation in phyllodes tumor of breast. Breast Cancer Res Treat 187, 339–347 (2021). https://doi.org/10.1007/s10549-021-06181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06181-z

Keywords

Navigation