Skip to main content

Advertisement

Log in

Prevalence of germline variants in consensus moderate-to-high-risk predisposition genes to hereditary breast and ovarian cancer in BRCA1/2-negative Brazilian patients

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to identify and classify genetic variants in consensus moderate-to-high-risk predisposition genes associated with Hereditary Breast and Ovarian Cancer Syndrome (HBOC), in BRCA1/2-negative patients from Brazil.

Methods

The study comprised 126 index patients who met NCCN clinical criteria and tested negative for all coding exons and intronic flanking regions of BRCA1/2 genes. Multiplex PCR-based assays were designed to cover the complete coding regions and flanking splicing sites of six genes implicated in HBOC. Sequencing was performed on HiSeq2500 Genome Analyzer.

Results

Overall, we identified 488 unique variants. We identified five patients (3.97%) that harbored pathogenic or likely pathogenic variants in four genes: ATM (1), CHEK2 (2), PALB2 (1), and TP53 (1). One hundred and thirty variants were classified as variants of uncertain significance (VUS), 10 of which were predicted to disrupt mRNA splicing (seven non-coding variants and three coding variants), while other six missense VUS were classified as probably damaging by prediction algorithms.

Conclusion

A detailed mutational profile of non-BRCA genes is still being described in Brazil. In this study, we contributed to filling this gap, by providing important data on the diversity of genetic variants in a Brazilian high-risk patient cohort. ATM, CHEK2, PALB2 and TP53 are well established as HBOC predisposition genes, and the identification of deleterious variants in such actionable genes contributes to clinical management of probands and relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniou A, Pharoah PDP, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130. https://doi.org/10.1086/375033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maxwell KN, Domchek SM (2012) Cancer treatment according to BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol 9:520–528. https://doi.org/10.1038/nrclinonc.2012.123

    Article  CAS  PubMed  Google Scholar 

  3. Easton DF, Pharoah PDP, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243–2257. https://doi.org/10.1056/NEJMsr1501341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Susswein LR, Marshall ML, Nusbaum R et al (2016) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 18:823–832. https://doi.org/10.1038/gim.2015.166

    Article  CAS  PubMed  Google Scholar 

  5. Slavin TP, Maxwell KN, Lilyquist J et al (2017) The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 3:22. https://doi.org/10.1038/s41523-017-0024-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jarhelle E, Riise Stensland HMF, Hansen GÅM et al (2019) Identifying sequence variants contributing to hereditary breast and ovarian cancer in BRCA1 and BRCA2 negative breast and ovarian cancer patients. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-55515-x

    Article  CAS  Google Scholar 

  7. Pal T, Agnese D, Daly M et al (2020) Points to consider: is there evidence to support BRCA1/2 and other inherited breast cancer genetic testing for all breast cancer patients? A statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 22:681–685. https://doi.org/10.1038/s41436-019-0712-x

    Article  PubMed  Google Scholar 

  8. Couch FJ, Hart SN, Sharma P et al (2015) Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33:304–311. https://doi.org/10.1200/JCO.2014.57.1414

    Article  CAS  PubMed  Google Scholar 

  9. Kurian AW, Li Y, Hamilton AS, et al (2017) Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer. In: Journal of Clinical Oncology. pp 2232–2239

  10. Momozawa Y, Iwasaki Y, Parsons MT et al (2018) Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun 9:4–6. https://doi.org/10.1038/s41467-018-06581-8

    Article  CAS  Google Scholar 

  11. Desmond A, Kurian AW, Gabree M et al (2015) Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol 1:943–951. https://doi.org/10.1001/jamaoncol.2015.2690

    Article  PubMed  Google Scholar 

  12. Couch FJ, Shimelis H, Hu C et al (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3:1190–1196. https://doi.org/10.1001/jamaoncol.2017.0424

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosenthal EA, Ranola JMO, Shirts BH (2017) Power of pedigree likelihood analysis in extended pedigrees to classify rare variants of uncertain significance in cancer risk genes. Fam Cancer 16:611–620. https://doi.org/10.1007/s10689-017-9989-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonache S, Esteban I, Moles A et al (2018) Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol 144:2495–2513. https://doi.org/10.1007/s00432-018-2763-9

    Article  CAS  PubMed  Google Scholar 

  15. Hauke J, Horvath J, Groß E et al (2018) Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med 7:1349–1358. https://doi.org/10.1002/cam4.1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu HM, Li S, Black MH et al (2019) Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol 5:51–57. https://doi.org/10.1001/jamaoncol.2018.2956

    Article  PubMed  Google Scholar 

  17. Singh J, Thota N, Singh S et al (2018a) Screening of over 1000 Indian patients with breast and/or ovarian cancer with a multi-gene panel: prevalence of BRCA1/2 and non-BRCA mutations. Breast Cancer Res Treat 170:189–196. https://doi.org/10.1007/s10549-018-4726-x

    Article  CAS  PubMed  Google Scholar 

  18. Dominguez-Valentin M, Nakken S, Tubeuf H et al (2019) Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-54517-z

    Article  CAS  Google Scholar 

  19. Antoniou AC, Casadei S, Heikkinen T et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371:497–506. https://doi.org/10.1056/NEJMoa1400382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schon K, Tischkowitz M (2018) Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat 167:417–423. https://doi.org/10.1007/s10549-017-4531-y

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Leslie G, Doroszuk A et al (2019) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol 38:674–685

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marabelli M, Cheng SC, Parmigiani G (2016) Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol 40:425–431. https://doi.org/10.1002/gepi.21971

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eliade M, Skrzypski J, Baurand A et al (2017) The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: what are the implications for the management of patients and families? Oncotarget 8:1957–1971. https://doi.org/10.18632/oncotarget.12699

    Article  PubMed  Google Scholar 

  24. Tung NM, Boughey JC, Pierce LJ et al (2020) Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J Clin Oncol. https://doi.org/10.1200/JCO.20.00299

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pena SDJ, di Pietro G, Fuchshuber-Moraes M et al (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One. https://doi.org/10.1371/journal.pone.0017063

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kehdy FSG, Gouveia MH, Machado M et al (2015) Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci U S A 112:8696–8701. https://doi.org/10.1073/pnas.1504447112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cybulski C, Kluźniak W, Huzarski T et al (2019) The spectrum of mutations predisposing to familial breast cancer in Poland. Int J Cancer 145:3311–3320. https://doi.org/10.1002/ijc.32492

    Article  CAS  PubMed  Google Scholar 

  28. Achatz MIW, Olivier M, Le CF et al (2007) The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 245:96–102. https://doi.org/10.1016/j.canlet.2005.12.039

    Article  CAS  PubMed  Google Scholar 

  29. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castéra L, Krieger S, Rousselin A et al (2014) Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 22:1305–1313. https://doi.org/10.1038/ejhg.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laduca H, Stuenkel AJ, Dolinsky JS et al (2014) Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Gen Med. https://doi.org/10.1038/gim.2014.40

    Article  Google Scholar 

  32. Thompson ER, Rowley SM, Li N et al (2016) Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 34:1455–1459. https://doi.org/10.1200/JCO.2015.63.7454

    Article  CAS  PubMed  Google Scholar 

  33. NCCN (2014) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Breast Cancer. Version 1.2014

  34. de Leeneer K, de Schrijver J, Clement L et al (2011) Practical tools to implement massive parallel pyrosequencing of PCR products in next generation molecular diagnostics. PLoS One 6:1–7. https://doi.org/10.1371/journal.pone.0025531

    Article  CAS  Google Scholar 

  35. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  Google Scholar 

  36. den Dunnen JT, Dalgleish R, Maglott DR et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37:564–569. https://doi.org/10.1002/humu.22981

    Article  CAS  Google Scholar 

  37. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meyer R, Kopanos C, Albarca Aguilera M et al (2018) VarSome: the human genomic variant search engine. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty897

    Article  PubMed  PubMed Central  Google Scholar 

  39. Desmet FO, Hamroun D, Lalande M et al (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:1–14. https://doi.org/10.1093/nar/gkp215

    Article  CAS  Google Scholar 

  40. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506. https://doi.org/10.1038/nature01368

    Article  CAS  PubMed  Google Scholar 

  41. Pauty J, Couturier AM, Rodrigue A et al (2017) Cancer-causing mutations in the tumor suppressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res 45:2644–2657. https://doi.org/10.1093/nar/gkx011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wiltshire T, Ducy M, Foo TK et al (2020) Functional characterization of 84 PALB2 variants of uncertain significance. Genet Med 22:622–632. https://doi.org/10.1038/s41436-019-0682-z

    Article  CAS  PubMed  Google Scholar 

  43. Decker B, Allen J, Luccarini C et al (2017) Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet 54:732–741. https://doi.org/10.1136/jmedgenet-2017-104588

    Article  CAS  PubMed  Google Scholar 

  44. Antoniou AC, Pharoah PD, McMullan G et al (2001) Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol 21:1–18. https://doi.org/10.1002/gepi.1014

    Article  CAS  PubMed  Google Scholar 

  45. Girard E, Eon-Marchais S, Olaso R et al (2019) Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int J Cancer 144:1962–1974. https://doi.org/10.1002/ijc.31921

    Article  CAS  PubMed  Google Scholar 

  46. Meijers-Heijboer H, Wijnen J, Vasen H et al (2003) The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet 72:1308–1314. https://doi.org/10.1086/375121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naseem H, Boylan J, Speake D et al (2006) Inherited association of breast and colorectal cancer: limited role of CHEK2 compared with high-penetrance genes. Clin Genet 70:388–395. https://doi.org/10.1111/j.1399-0004.2006.00698.x

    Article  CAS  PubMed  Google Scholar 

  48. Winship I, Southey MC (2016) Gene panel testing for hereditary breast cancer. Med J Aust 204:188-190.e1. https://doi.org/10.5694/mja15.01335

    Article  PubMed  Google Scholar 

  49. Delimitsou A, Fostira F, Kalfakakou D et al (2019) Functional characterization of CHEK2 variants in a Saccharomyces cerevisiae system. Hum Mutat 40:631–648. https://doi.org/10.1002/humu.23728

    Article  CAS  PubMed  Google Scholar 

  50. Fischer NW, Prodeus A, Gariépy J (2018) Survival in males with glioma and gastric adenocarcinoma correlates with mutant p53 residual transcriptional activity. JCI insight. https://doi.org/10.1172/jci.insight.121364

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singh J, Thota N, Singh S et al (2018b) Screening of over 1000 Indian patients with breast and/or ovarian cancer with a multi-gene panel: prevalence of BRCA1/2 and non-BRCA mutations. Breast Cancer Res Treat 170:189–196. https://doi.org/10.1007/s10549-018-4726-x

    Article  CAS  PubMed  Google Scholar 

  52. Tavtigian SV, Oefner PJ, Babikyan D et al (2009) Rare, evolutionarily unlikely missense substitutions in atm confer increased risk of breast cancer. Am J Hum Genet 85:427–446. https://doi.org/10.1016/j.ajhg.2009.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buys SS, Sandbach JF, Gammon A et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123:1721–1730. https://doi.org/10.1002/cncr.30498

    Article  CAS  PubMed  Google Scholar 

  54. Sás D (2015) Mutações em genes de predisposição para câncer de mama em pacientes brasileiros de risco. Diss - Univ Estadual Paul “Julio Mesquita Filho”, Inst Biociências Botucatu 42

  55. de Souza Timoteo AR, Gonçalves AÉMM, Sales LAP et al (2018) A portrait of germline mutation in Brazilian at-risk for hereditary breast cancer. Breast Cancer Res Treat 172:637–646. https://doi.org/10.1007/s10549-018-4938-0

    Article  CAS  PubMed  Google Scholar 

  56. Afghahi A, Kurian AW (2017) The Changing landscape of genetic testing for inherited breast cancer predisposition. Curr Treat Options Oncol. https://doi.org/10.1007/s11864-017-0468-y

    Article  PubMed  Google Scholar 

  57. Da Costa E, Silva Carvalho S, Cury NM, Brotto DB et al (2020) Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genom. https://doi.org/10.1186/s12920-019-0652-y

    Article  Google Scholar 

  58. Dutil J, Golubeva VA, Pacheco-Torres AL et al (2015) The spectrum of BRCA1 and BRCA2 alleles in Latin America and the Caribbean: a clinical perspective. Breast Cancer Res Treat 154:441–453. https://doi.org/10.1007/s10549-015-3629-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dutil J, Teer JK, Golubeva V et al (2019) Germline variants in cancer genes in high-risk non-BRCA patients from Puerto Rico. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-54170-6

    Article  CAS  Google Scholar 

  60. Jerzak KJ, Mancuso T, Eisen A (2018) Ataxia–telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol 25:e176–e180. https://doi.org/10.3747/co.25.3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anna A, Monika G (2018) Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 59:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu Y, Masuda A, Ito M et al (2011) AG-dependent 3’-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Res 39:4396–4404. https://doi.org/10.1093/nar/gkr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fortuno C, Cipponi A, Ballinger ML et al (2019) A quantitative model to predict pathogenicity of missense variants in the TP53 gene. Hum Mutat 40:788–800. https://doi.org/10.1002/humu.23739

    Article  CAS  PubMed  Google Scholar 

  64. Palmero EI, Carraro DM, Alemar B et al (2018) The germline mutational landscape of BRCA1 and BRCA2 in Brazil. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-27315-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful to all patients who participated in this study. We also thank Kelly Rose Lobo de Souza who performed BRCA genetic testing and Carolina Furtado for her experimental assistance. This work was supported by the National Institute for Cancer Control (INCT para Controle do Câncer; https://www.inct-cancer-control.com.br), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, Grant Numbers: 305873/2014-8 and 573806/2008-0), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Brazil Grant Number: E26/170.026/2008). PSS was supported by grants from the Rio de Janeiro State Science Foundation (FAPERJ E26/201.200/2014), the Brazilian National Research Council (CNPq 304498/2014-9), and the Coordination for Higher Education Personnel Training (CAPES). This study is part of the requirements for the doctoral degree in Genetics of PSS at the Federal University of Rio de Janeiro.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MAMM and CRB. Patients’ inclusion, clinical data collection, and Genetic Counseling: ACES. DNA sequencing: RG, PSS, CMN, SMAP and BPM. Identification of genetics variants and pathogenicity classification: RG, ACB, PSS, and BPM. Manuscript writing—original draft: RG. Manuscript writing—review and editing: RG, PSS, BPM, and MAMM. Funding acquisition: MAMM and CRB. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Miguel Angelo Martins Moreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Patient consent

All individuals who participate in this study provided written informed consent approved by the local ethics committee. No identifiable personal patient data are show in this article.

Research involving human rights

All procedures performed in studies involving human participants were approved by the ethical committee of the Brazilian National Cancer Institute (INCA; Project #114/07 and C.A.A.E. 14144819.0.0000.5274).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Supplementary Fig. 1 Overview of the germline variants found in this study (EPS 1466 kb)

10549_2020_5985_MOESM2_ESM.eps

Supplementary file2 Supplementary Fig. 2 Pathogenic (P), likely pathogenic (LP), and VUS classified as probably damaging by protein position. Protein domains are shown as colored bars (EPS 3033 kb)

Supplementary file3 (DOC 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, R., Spinola, P.d., Brant, A.C. et al. Prevalence of germline variants in consensus moderate-to-high-risk predisposition genes to hereditary breast and ovarian cancer in BRCA1/2-negative Brazilian patients. Breast Cancer Res Treat 185, 851–861 (2021). https://doi.org/10.1007/s10549-020-05985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05985-9

Keywords

Navigation