Skip to main content

Advertisement

Log in

CELF6 modulates triple-negative breast cancer progression by regulating the stability of FBP1 mRNA

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Triple-negative breast cancer (TNBC) remains a great challenge in clinical treatment due to a shortage of effective therapeutic targets and acquired chemoresistance. Here, we identified the role of an RNA-binding protein, CUG-BP Elav-like family member 6 (CELF6), in the TNBC development and paclitaxel (PTX) chemoresistance.

Methods

Stable CELF6-overexpressing cell lines were established in BT549 and MDA-MB-231 cells. Cell proliferation was determined using cell counting, two-dimensional colony formation, and MTT assay. Meanwhile, cell migration and cell invasion were detected by Transwell assay. Furthermore, the downstream target gene of CELF6 was identified and the direct interaction was further determined by luciferase reporter assay, immunoprecipitation, and RNA pull-down. Additionally, the PTX resistant cell line was established to determine the role of CELF6 in PTX resistance.

Results

CELF6 overexpression suppressed cell proliferation, cell migration, and cell invasion. Mechanistically, Fructose-Bisphosphatase 1 (FBP1) was identified as the target gene of CELF6 and stabilized by CELF6 via binding 3′UTR. CELF6 overexpression mediated inhibition in TNBC development was dependent on FBP1. Moreover, CELF6 overexpression increased the sensitivity to PTX treatment.

Conclusion

CELF6 functions as a tumor suppressor by upregulating FBP 1 expression via stabilizing its mRNA, and thereby inhibits TNBC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CELF6:

CUG-BP Elav-like family member 6

TNBC:

Triple-negative breast cancer

PTX:

Paclitaxel

FBP1:

Fructose–bisphosphatase 1

ER:

Estrogen receptors

PR:

Progesterone receptor

HER2:

HUMAN epidermal growth factor receptor 2

RRM:

RNA recognition motifs

IP:

Immunoprecipitation

References

  1. Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33(5):315–318. https://doi.org/10.1016/j.canep.2009.10.003

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. https://doi.org/10.3322/caac.20073

    Article  PubMed  Google Scholar 

  3. Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7(5):552–556. https://doi.org/10.1038/87876

    Article  CAS  PubMed  Google Scholar 

  4. Coyle YM (2004) The effect of environment on breast cancer risk. Breast Cancer Res Treat 84(3):273–288. https://doi.org/10.1023/b:Brea.0000019964.33963.09

    Article  CAS  PubMed  Google Scholar 

  5. Mezzetti M, La Vecchia C, Decarli A, Boyle P, Talamini R, Franceschi S (1998) Population attributable risk for breast cancer: diet, nutrition, and physical exercise. J Natl Cancer Inst 90(5):389–394. https://doi.org/10.1093/jnci/90.5.389

    Article  CAS  PubMed  Google Scholar 

  6. Kapoor PM, Lindstrom S, Behrens S, Wang X, Michailidou K, Bolla MK, Wang Q, Dennis J, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, Garcia-Closas M, Easton DF, Milne RL, Chang-Claude J (2020) Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the breast cancer association consortium. Int J Epidemiol 49(1):216–232. https://doi.org/10.1093/ije/dyz193

    Article  PubMed  Google Scholar 

  7. Pourcelot C, Orillard E, Nallet G, Dirand C, Billion-Rey F, Barbier G, Chouk S, Limat S, Montcuquet P, Henriques J, Paget-Bailly S, Anota A, Chaigneau L, Nerich V (2018) Adjuvant hormonal therapy for early breast cancer: an epidemiologic study of medication adherence. Breast Cancer Res Treat 169(1):153–162. https://doi.org/10.1007/s10549-018-4676-3

    Article  PubMed  Google Scholar 

  8. Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523–532. https://doi.org/10.1038/nrc3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeruss JS, Mittendorf EA, Tucker SL, Gonzalez-Angulo AM, Buchholz TA, Sahin AA, Cormier JN, Buzdar AU, Hortobagyi GN, Hunt KK (2008) Staging of breast cancer in the neoadjuvant setting. Cancer Res 68(16):6477–6481. https://doi.org/10.1158/0008-5472.Can-07-6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yam C, Mani SA, Moulder SL (2017) Targeting the molecular subtypes of triple negative breast cancer: understanding the diversity to progress the field. Oncologist 22(9):1086–1093. https://doi.org/10.1634/theoncologist.2017-0095

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, Tan PH (2010) Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol 23(1):123–133. https://doi.org/10.1038/modpathol.2009.145

    Article  CAS  PubMed  Google Scholar 

  12. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434. https://doi.org/10.1158/1078-0432.Ccr-06-3045

    Article  Google Scholar 

  13. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. https://doi.org/10.1158/1078-0432.Ccr-06-1109

    Article  CAS  PubMed  Google Scholar 

  14. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36):5652–5657. https://doi.org/10.1200/jco.2006.06.5664

    Article  PubMed  Google Scholar 

  15. Symmans WF, Wei C, Gould R, Yu X, Zhang Y, Liu M, Walls A, Bousamra A, Ramineni M, Sinn B, Hunt K, Buchholz TA, Valero V, Buzdar AU, Yang W, Brewster AM, Moulder S, Pusztai L, Hatzis C, Hortobagyi GN (2017) Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol 35(10):1049–1060. https://doi.org/10.1200/jco.2015.63.1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ladd AN, Charlet N, Cooper TA (2001) The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol 21(4):1285–1296. https://doi.org/10.1128/mcb.21.4.1285-1296.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ladd AN, Nguyen NH, Malhotra K, Cooper TA (2004) CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer-dependent alternative splicing. J Biol Chem 279(17):17756–17764. https://doi.org/10.1074/jbc.M310687200

    Article  CAS  PubMed  Google Scholar 

  18. Dougherty JD, Maloney SE, Wozniak DF, Rieger MA, Sonnenblick L, Coppola G, Mahieu NG, Zhang J, Cai J, Patti GJ, Abrahams BS, Geschwind DH, Heintz N (2013) The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J Neurosci 33(7):2732–2753. https://doi.org/10.1523/jneurosci.4762-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maloney SE, Khangura E, Dougherty JD (2016) The RNA-binding protein Celf6 is highly expressed in diencephalic nuclei and neuromodulatory cell populations of the mouse brain. Brain Struct Funct 221(4):1809–1831. https://doi.org/10.1007/s00429-015-1005-z

    Article  CAS  PubMed  Google Scholar 

  20. Maloney SE, Rieger MA, Al-Hasani R, Bruchas MR, Wozniak DF, Dougherty JD (2019) Loss of CELF6 RNA binding protein impairs cocaine conditioned place preference and contextual fear conditioning. Genes Brain Behav 18(7):e12593. https://doi.org/10.1111/gbb.12593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu G, Zhang Q, Xia L, Shi M, Cai J, Zhang H, Li J, Lin G, Xie W, Zhang Y, Xu N (2019) RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis 10(10):688. https://doi.org/10.1038/s41419-019-1927-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3(6):755–766. https://doi.org/10.1517/14656566.3.6.755

    Article  CAS  PubMed  Google Scholar 

  23. Schettini F, Giuliano M, De Placido S, Arpino G (2016) Nab-paclitaxel for the treatment of triple-negative breast cancer: Rationale, clinical data and future perspectives. Cancer Treat Rev 50:129–141. https://doi.org/10.1016/j.ctrv.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  24. Abu Samaan TM, Samec M, Liskova A, Kubatka P, Busselberg D (2019) Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. https://doi.org/10.3390/biom9120789

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jhan JR, Andrechek ER (2017) Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics 18(17):1595–1609. https://doi.org/10.2217/pgs-2017-0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dasgupta T, Ladd AN (2012) The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA 3(1):104–121. https://doi.org/10.1002/wrna.107

    Article  CAS  PubMed  Google Scholar 

  27. Vlasova IA, Bohjanen PR (2008) Posttranscriptional regulation of gene networks by GU-rich elements and CELF proteins. RNA Biol 5(4):201–207. https://doi.org/10.4161/rna.7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S (2003) Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 11(1):113–126. https://doi.org/10.1016/s1097-2765(03)00012-1

    Article  CAS  PubMed  Google Scholar 

  29. House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V (2015) RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget 6(41):43620–43634. https://doi.org/10.18632/oncotarget.6204

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ramalingam S, Ramamoorthy P, Subramaniam D, Anant S (2012) Reduced expression of RNA binding protein CELF2, a putative tumor suppressor gene in colon cancer. Immunogastroenterology 1(1):27–33. https://doi.org/10.7178/ig.1.1.7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331. https://doi.org/10.1016/j.ccr.2013.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen M, Zhang J, Li N, Qian Z, Zhu M, Li Q, Zheng J, Wang X, Shi G (2011) Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer. PLoS ONE 6(10):e25564. https://doi.org/10.1371/journal.pone.0025564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Wang X, Zhang J, Lam EK, Shin VY, Cheng AS, Yu J, Chan FK, Sung JJ, Jin HC (2010) Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene 29(3):442–450. https://doi.org/10.1038/onc.2009.332

    Article  CAS  PubMed  Google Scholar 

  34. Li K, Ying M, Feng D, Du J, Chen S, Dan B, Wang C, Wang Y (2016) Fructose-1,6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer. Biomed Pharmacother 84:1144–1149. https://doi.org/10.1016/j.biopha.2016.10.050

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (81801952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Yang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhao, L., Pei, J. et al. CELF6 modulates triple-negative breast cancer progression by regulating the stability of FBP1 mRNA. Breast Cancer Res Treat 183, 71–82 (2020). https://doi.org/10.1007/s10549-020-05753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05753-9

Keywords

Navigation