Skip to main content

Advertisement

Log in

Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Genomic studies have revealed that genomic aberrations play important roles in the progression of this disease. The aim of this study was to evaluate the associations between clinical survival outcomes of the clonality and subclonality status of driver genes in breast cancer.

Methods

We performed an integrated analysis to infer the clonal status of 55 driver genes in breast cancer data from TCGA. We used the chi-squared test to assess the relations between clonality of driver gene mutations and clinicopathological factors. The Kaplan–Meier method was performed for the visualization and the differences between survival curves were calculated by log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors.

Results

We identified a high proportion of clonal mutations in these driver genes. Among them, there were 17 genes showing significant associations between their clonality and multiple clinicopathologic factors. Performing survival analysis on BRCA patients with clonal or subclonal driver gene mutations, we found that clonal ERBB2, FOXA1, and KMT2C mutations and subclonal GATA3 and RB1 mutations predicted shorter overall survival compared with those with wild type. Furthermore, clonal ERBB2 and FOXA1 mutations and subclonal GATA3 and RB1 mutations independently predicted for shorter overall survival after adjusting for clinicopathological factors. By longitudinal analysis, the clonality of ERBB2, FOXA1, GATA3, and RB1 significantly predicted patients’ outcome within some specific BRCA tumor stages and histological subtypes.

Conclusions

In summary, these clonal or subclonal mutations of driver genes have implications for diagnosis, prognosis, and treatment with BRCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  2. Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121(10):3786–3788. https://doi.org/10.1172/jci60534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, Haupt S, Pochampally R, Boss GR, Romero DG, Radu CG, Martinez LA (2015) Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Blood 6:7389. https://doi.org/10.1038/ncomms8389

    Article  CAS  Google Scholar 

  4. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. https://doi.org/10.1158/0008-5472.can-07-6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 109(8):3024–3029. https://doi.org/10.1073/pnas.1200010109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pharoah PD, Easton DF, Stockton DL, Gayther S, Ponder BA (1999) Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res 59(4):868–871

    CAS  PubMed  Google Scholar 

  7. Verhoog LC, Brekelmans CT, Seynaeve C, van den Bosch LM, Dahmen G, van Geel AN, Tilanus-Linthorst MM, Bartels CC, Wagner A, van den Ouweland A, Devilee P, Meijers-Heijboer EJ, Klijn JG (1998) Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351(9099):316–321

    Article  CAS  PubMed  Google Scholar 

  8. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345. https://doi.org/10.1038/nature12625

    Article  CAS  PubMed  Google Scholar 

  9. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13(11):795–806. https://doi.org/10.1038/nrg3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L, Wan Y, Zhang W, Shukla SA, Vartanov A, Fernandes SM, Saksena G, Cibulskis K, Tesar B, Gabriel S, Hacohen N, Meyerson M, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726. https://doi.org/10.1016/j.cell.2013.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, Jares P, Navarro A, Martin-Garcia D, Bea S, Salaverria I, Oldreive C, Aymerich M, Suarez-Cisneros H, Rozman M, Villamor N, Colomer D, Lopez-Guillermo A, Gonzalez M, Alcoceba M, Terol MJ, Colado E, Puente XS, Lopez-Otin C, Enjuanes A, Campo E (2016) Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127(17):2122–2130. https://doi.org/10.1182/blood-2015-07-659144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJM, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193. https://doi.org/10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F, Yamamoto T, Tanahashi K, Ranjit M, Wakabayashi T, Yoshizato T, Kataoka K, Yoshida K, Nagata Y, Sato-Otsubo A, Tanaka H, Sanada M, Kondo Y, Nakamura H, Mizoguchi M, Abe T, Muragaki Y, Watanabe R, Ito I, Miyano S, Natsume A, Ogawa S (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468. https://doi.org/10.1038/ng.3273

    Article  CAS  PubMed  Google Scholar 

  14. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.cd-12-0095

    Article  PubMed  Google Scholar 

  15. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C (2015) Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7(283):283ra254. https://doi.org/10.1126/scitranslmed.aaa1408

    Article  Google Scholar 

  17. Zhang H, Liao J, Zhang X, Zhao E, Liang X, Luo S, Shi J, Yu F, Xu J, Shen W, Li Y, Xiao Y, Li X (2018) Sex difference of mutation clonality in diffuse glioma evolution. Neuro Oncol. https://doi.org/10.1093/neuonc/noy154

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30(5):413–421. https://doi.org/10.1038/nbt.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, Vij R, Tomasson MH, Graubert TA, Walter MJ, Ellis MJ, Schierding W, DiPersio JF, Ley TJ, Mardis ER, Wilson RK, Ding L (2014) SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 10(8):e1003665. https://doi.org/10.1371/journal.pcbi.1003665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501. https://doi.org/10.1038/nature12912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183. https://doi.org/10.1038/nrc1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45(D1):D777–D783. https://doi.org/10.1093/nar/gkw1121

    Article  CAS  PubMed  Google Scholar 

  23. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol. https://doi.org/10.1200/PO.17.00011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burke KA, Piscuoglio S, Berman SH, Reis-Filho JS, Weigelt B, van Diest PJ, Moelans CB, Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Cancer Res 15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166

    Article  CAS  Google Scholar 

  25. McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1):15–26. https://doi.org/10.1016/j.ccell.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  26. Landau DA, Carter SL, Getz G, Wu CJ (2014) Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28(1):34–43. https://doi.org/10.1038/leu.2013.248

    Article  CAS  PubMed  Google Scholar 

  27. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O’Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627. https://doi.org/10.1182/blood-2013-08-518886 (quiz 3699)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Molenaar RJ, Thota S, Nagata Y, Patel B, Clemente M, Przychodzen B, Hirsh C, Viny AD, Hosano N, Bleeker FE, Meggendorfer M, Alpermann T, Shiraishi Y, Chiba K, Tanaka H, van Noorden CJ, Radivoyevitch T, Carraway HE, Makishima H, Miyano S, Sekeres MA, Ogawa S, Haferlach T, Maciejewski JP (2015) Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 29(11):2134–2142. https://doi.org/10.1038/leu.2015.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi J, Hua X, Zhu B, Ravichandran S, Wang M, Nguyen C, Brodie SA, Palleschi A, Alloisio M, Pariscenti G, Jones K, Zhou W, Bouk AJ, Boland J, Hicks B, Risch A, Bennett H, Luke BT, Song L, Duan J, Liu P, Kohno T, Chen Q, Meerzaman D, Marconett C, Laird-Offringa I, Mills I, Caporaso NE, Gail MH, Pesatori AC, Consonni D, Bertazzi PA, Chanock SJ, Landi MT (2016) Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med 13(12):e1002162. https://doi.org/10.1371/journal.pmed.1002162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, Sloan AE, Cohen ML, Van Meir EG, Scarpace L, Laird PW, Weinstein JN, Lander ES, Gabriel S, Getz G, Meyerson M, Chin L, Barnholtz-Sloan JS, Verhaak RG (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327. https://doi.org/10.1101/gr.180612.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, Butler SOM, Teague AP, Mudie JW, Anderson L, Rashid E, Tai N, Shammas YT, Sperling MA, Fulciniti AS, Richardson M, Parmigiani PG, Magrangeas G, Minvielle F, Moreau S, Attal P, Facon M, Futreal T, Anderson PA, Campbell KC, Munshi PJ NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997. https://doi.org/10.1038/ncomms3997

    Article  CAS  PubMed  Google Scholar 

  32. Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, Shen R, Pareja F, Berman SH, Wang L, Pierga JY, Vincent-Salomon A, Viale A, Norton L, Sigal B, Weigelt B, Cottu P, Reis-Filho JS (2017) Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin Cancer Res 23(15):4402–4415. https://doi.org/10.1158/1078-0432.ccr-16-3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schrijver W, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, Berman SH, Reis-Filho JS, Weigelt B, van Diest PJ, Moelans CB (2018) Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res 78(12):3112–3121. https://doi.org/10.1158/0008-5472.Can-17-2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fusco N, Geyer FC, De Filippo MR, Martelotto LG, Ng CK, Piscuoglio S, Guerini-Rocco E, Schultheis AM, Fuhrmann L, Wang L, Jungbluth AA, Burke KA, Lim RS, Vincent-Salomon A, Bamba M, Moritani S, Badve SS, Ichihara S, Ellis IO, Reis-Filho JS, Weigelt B (2016) Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod Pathol 29(11):1292–1305. https://doi.org/10.1038/modpathol.2016.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DW, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Borresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479. https://doi.org/10.1038/ncomms11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS (2015) Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 107 (5). https://doi.org/10.1093/jnci/djv015

  37. Jiang YZ, Yu KD, Zuo WJ, Peng WT, Shao ZM (2014) GATA3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer 120(9):1329–1337. https://doi.org/10.1002/cncr.28566

    Article  CAS  PubMed  Google Scholar 

  38. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell S, Futreal PA, Stewart A, Swanton C (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233. https://doi.org/10.1038/ng.2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher R, Horswell S, Rowan A, Salm MP, de Bruin EC, Gulati S, McGranahan N, Stares M, Gerlinger M, Varela I, Crockford A, Favero F, Quidville V, Andre F, Navas C, Gronroos E, Nicol D, Hazell S, Hrouda D, O’Brien T, Matthews N, Phillimore B, Begum S, Rabinowitz A, Biggs J, Bates PA, McDonald NQ, Stamp G, Spencer-Dene B, Hsieh JJ, Xu J, Pickering L, Gore M, Larkin J, Swanton C (2014) Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution. Genome Biol 15(8):433. https://doi.org/10.1186/s13059-014-0433-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Swanton C (2015) Cancer evolution constrained by mutation order. N Engl J Med 372(7):661–663. https://doi.org/10.1056/NEJMe1414288

    Article  CAS  PubMed  Google Scholar 

  41. Delhommeau F (2015) Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 372(19):1865. https://doi.org/10.1056/NEJMc1503143

    Article  PubMed  Google Scholar 

  42. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  43. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209. https://doi.org/10.1056/NEJMoa1213261

    Article  CAS  PubMed  Google Scholar 

  44. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112. https://doi.org/10.1038/nature12065

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded in part by the National Program on Key Basic Research Project [973 Program, Grant No. 2014CB910504], the National Natural Science Foundation of China [Grant Nos. 61473106, 61573122], the China Postdoctoral Science Foundation (2016M600260), Wu lien-teh youth science fund project of Harbin medical university [Grant No. WLD-QN1407], Special funds for the construction of higher education in Heilongjiang Province [Grant No. UNPYSCT-2016049], the Heilongjiang Postdoctoral Foundation (LBH-Z16098).

Author information

Authors and Affiliations

Authors

Contributions

SJC, XL, and YX conceived and designed the project. YJL, EJZ, and SYL acquired the data. YJL and EJZ performed the statistical analysis and analyzed and interpreted all the data. YJL, EJZ, and SYL prepared the figures and tables. YX and YJL wrote the paper. EJZ and SYL reviewed and revised the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Yun Xiao, Xia Li or Shujun Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Zhao, E., Luo, S. et al. Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer. Breast Cancer Res Treat 175, 91–104 (2019). https://doi.org/10.1007/s10549-019-05153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05153-8

Keywords

Navigation