Skip to main content

Advertisement

Log in

Previous GWAS hits in relation to young-onset breast cancer

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Genome-wide association studies (GWAS) have identified dozens of single-nucleotide polymorphisms (SNPs) associated with breast cancer. Few studies focused on young-onset breast cancer, which exhibits etiologic and tumor-type differences from older-onset disease. Possible confounding by prenatal effects of the maternal genome has also not been considered.

Methods

Using a family-based design for breast cancer before age 50, we assessed the relationship between breast cancer and 77 GWAS-identified breast cancer risk SNPs. We estimated relative risks (RR) for inherited and maternally mediated genetic effects. We also used published RR estimates to calculate genetic risk scores and model joint effects.

Results

Seventeen of the candidate SNPs were nominally associated with young-onset breast cancer in our 1296 non-Hispanic white affected families (uncorrected p value <0.05). Top-ranked SNPs included rs3803662-A (TOX3, RR = 1.39; p = 7.0 × 10−6), rs12662670-G (ESR1, RR = 1.56; p = 5.7 × 10−4), rs2981579-A (FGFR2, RR = 1.24; p = 0.002), and rs999737-G (RAD51B, RR = 1.37; p = 0.003). No maternally mediated effects were found. A risk score based on all 77 SNPs indicated that their overall relationship to young-onset breast cancer risk was more than additive (additive-fit p = 2.2 × 10−7) and consistent with a multiplicative joint effect (multiplicative-fit p = 0.27). With the multiplicative formulation, the case sister’s genetic risk score exceeded that of her unaffected sister in 59% of families.

Conclusions

The results of this family-based study indicate that no effects of previously identified risk SNPs were explained by prenatal effects of maternal variants. Many of the known breast cancer risk variants were associated with young-onset breast cancer, with evidence that TOX3, ESR1, FGFR2, and RAD51B are important for young-onset disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

ER:

Estrogen receptor

GWAS:

Genome-wide association study

LD:

Linkage disequilibrium

OR:

Odds ratio

RR:

Relative risk

SNP:

Single-nucleotide polymorphism

References

  1. Ahsan H, Halpern J, Kibriya MG, Pierce BL, Tong L, Gamazon E et al (2014) A genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age. Cancer Epidemiol Biomark Prev 23(4):658–669

    Article  CAS  Google Scholar 

  2. Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM et al (2010) A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 42(10):885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai Q, Long J, Lu W, Qu S, Wen W, Kang D et al (2011) Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium. Hum Mol Genet 20(24):4991–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W et al (2014) Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat Genet 46(8):886–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen F, Chen GK, Stram DO, Millikan RC, Ambrosone CB, John EM et al (2013) A genome-wide association study of breast cancer in women of African ancestry. Hum Genet 132(1):39–48

    Article  PubMed  Google Scholar 

  6. Couch FJ, Wang X, McGuffog L, Lee A, Olswold C, Kuchenbaecker KB et al (2013) Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 9(3):e1003212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elgazzar S, Zembutsu H, Takahashi A, Kubo M, Aki F, Hirata K et al (2012) A genome-wide association study identifies a genetic variant in the SIAH2 locus associated with hormonal receptor-positive breast cancer in Japanese. J Hum Genet 57(12):766–771

    Article  CAS  PubMed  Google Scholar 

  9. Fejerman L, Ahmadiyeh N, Hu D, Huntsman S, Beckman KB, Caswell JL et al (2014) Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nat Commun 5:5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fletcher O, Johnson N, Orr N, Hosking FJ, Gibson LJ, Walker K et al (2011) Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst 103(5):425–435

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN et al (2013) Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45(4):392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaudet MM, Kirchhoff T, Green T, Vijai J, Korn JM, Guiducci C et al (2010) Common genetic variants and modification of penetrance of BRCA2-associated breast cancer. PLoS Genet 6(10):e1001183

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haiman CA, Chen GK, Vachon CM, Canzian F, Dunning A, Millikan RC et al (2011) A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 43(12):1210–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kibriya MG, Jasmine F, Argos M, Andrulis I, John EM, Chang-Claude J et al (2009) A pilot genome-wide association study of early-onset breast cancer. Breast Cancer Res Treat 114(3):463–467

    Article  CAS  PubMed  Google Scholar 

  17. Kim HC, Lee JY, Sung H, Choi JY, Park SK, Lee KM et al (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res 14(2):R56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Humphreys K, Darabi H, Rosin G, Hannelius U, Heikkinen T et al (2010) A genome-wide association scan on estrogen receptor-negative breast cancer. Breast Cancer Res 12(6):R93

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li J, Humphreys K, Heikkinen T, Aittomaki K, Blomqvist C, Pharoah PD et al (2011) A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat 126(3):717–727

    Article  CAS  PubMed  Google Scholar 

  20. Long J, Cai Q, Shu XO, Qu S, Li C, Zheng Y et al (2010) Identification of a functional genetic variant at 16q12.1 for breast cancer risk: results from the Asia Breast Cancer Consortium. PLoS Genet 6(6):e1001002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Long J, Cai Q, Sung H, Shi J, Zhang B, Choi JY et al (2012) Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. PLoS Genet 8(2):e1002532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Low SK, Takahashi A, Ashikawa K, Inazawa J, Miki Y, Kubo M et al (2013) Genome-wide association study of breast cancer in the Japanese population. PLoS ONE 8(10):e76463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL et al (2007) A genome-wide association study of breast and prostate cancer in the NHLBI’s Framingham Heart Study. BMC Med Genet 8(Suppl 1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Purrington KS, Slager S, Eccles D, Yannoukakos D, Fasching PA, Miron P et al (2014) Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 35(5):1012–1019

    Article  CAS  PubMed  Google Scholar 

  26. Rinella ES, Shao Y, Yackowski L, Pramanik S, Oratz R, Schnabel F et al (2013) Genetic variants associated with breast cancer risk for Ashkenazi Jewish women with strong family histories but no identifiable BRCA1/2 mutation. Hum Genet 132(5):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sehrawat B, Sridharan M, Ghosh S, Robson P, Cass CE, Mackey JR et al (2011) Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility. Hum Genet 130(4):529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siddiq A, Couch FJ, Chen GK, Lindstrom S, Eccles D, Millikan RC et al (2012) A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum Mol Genet 21(24):5373–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song C, Chen GK, Millikan RC, Ambrosone CB, John EM, Bernstein L et al (2013) A genome-wide scan for breast cancer risk haplotypes among African American women. PLoS ONE 8(2):e57298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39(7):865–869

    Article  CAS  PubMed  Google Scholar 

  31. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41(5):579–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42(6):504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41(3):324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103(16):1252–1263

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CT et al (2011) Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study. Cancer Epidemiol Biomark Prev 20(9):1950–1959

    Article  CAS  Google Scholar 

  36. O’Brien KM, Cole SR, Poole C, Bensen JT, Herring AH, Engel LS et al (2014) Replication of breast cancer susceptibility loci in whites and African Americans using a Bayesian approach. Am J Epidemiol 179(3):382–394

    Article  PubMed  Google Scholar 

  37. Reeves SG, Meldrum C, Groombridge C, Spigelman A, Suchy J, Kurzawski G et al (2012) DNA repair gene polymorphisms and risk of early onset colorectal cancer in Lynch syndrome. Cancer Epidemiol 36(2):183–189

    Article  CAS  PubMed  Google Scholar 

  38. Slattery ML, Baumgartner KB, Giuliano AR, Byers T, Herrick JS, Wolff RK (2011) Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat 129(2):531–539

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zheng W, Cai Q, Signorello LB, Long J, Hargreaves MK, Deming SL et al (2009) Evaluation of 11 breast cancer susceptibility loci in African-American women. Cancer Epidemiol Biomarkers Prev 18(10):2761–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elematore I, Gonzalez-Hormazabal P, Reyes JM, Blanco R, Bravo T, Peralta O et al (2014) Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Mol Biol Rep 41(6):3715–3722

    Article  CAS  PubMed  Google Scholar 

  41. Fu F, Wang C, Huang M, Song C, Lin S, Huang H (2012) Polymorphisms in second intron of the FGFR2 gene are associated with the risk of early-onset breast cancer in Chinese Han Women. Tohoku J Exp Med 226(3):221–229

    Article  CAS  PubMed  Google Scholar 

  42. Jara L, Gonzalez-Hormazabal P, Cerceno K, Di Capua GA, Reyes JM, Blanco R et al (2013) Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population. Breast Cancer Res Treat 137(2):559–569

    Article  CAS  PubMed  Google Scholar 

  43. Tapper W, Hammond V, Gerty S, Ennis S, Simmonds P, Collins A et al (2008) The influence of genetic variation in 30 selected genes on the clinical characteristics of early onset breast cancer. Breast Cancer Res 10(6):R108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Anderson WF, Matsuno RK, Sherman ME, Lissowska J, Gail MH, Brinton LA et al (2007) Estimating age-specific breast cancer risks: a descriptive tool to identify age interactions. Cancer Causes Control 18(4):439–447

    Article  PubMed  Google Scholar 

  45. Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119(9):2007–2025

    Article  CAS  PubMed  Google Scholar 

  46. Trentham-Dietz A, Sprague BL, Hampton JM, Miglioretti DL, Nelson HD, Titus LJ et al (2014) Modification of breast cancer risk according to age and menopausal status: a combined analysis of five population-based case-control studies. Breast Cancer Res Treat 145(1):165–175

    Article  PubMed  PubMed Central  Google Scholar 

  47. Van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR et al (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527

    Article  PubMed  Google Scholar 

  48. Collaborative Group on Hormonal Factors in Breast Cancer (2001) Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet 358(9291):1389–1399

    Article  Google Scholar 

  49. Althuis MD, Brogan DD, Coates RJ, Daling JR, Gammon MD, Malone K et al (2003) Breast cancers among very young premenopausal women (United States). Cancer Causes Control 14:151–160

    Article  PubMed  Google Scholar 

  50. Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y et al (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26(20):3324–3330

    Article  PubMed  Google Scholar 

  51. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502

    Article  CAS  PubMed  Google Scholar 

  52. Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20(16):3289–3303

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chan M, Ji SM, Liaw CS, Yap YS, Law HY, Yoon CS et al (2012) Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population. Breast Cancer Res Treat 136(1):209–220

    Article  CAS  PubMed  Google Scholar 

  54. Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D et al (2011) Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomark Prev 20(5):793–798

    Article  CAS  Google Scholar 

  55. O’Brien KM, Cole SR, Engel LS, Bensen JT, Poole C, Herring AH et al (2014) Breast cancer subtypes and previously established genetic risk factors: a bayesian approach. Cancer Epidemiol Biomark Prev 23(1):84–97

    Article  Google Scholar 

  56. Rebbeck TR, DeMichele A, Tran TV, Panossian S, Bunin GR, Troxel AB et al (2009) Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women. Carcinogenesis 30(2):269–274

    Article  CAS  PubMed  Google Scholar 

  57. Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7(5):385–394

    Article  CAS  PubMed  Google Scholar 

  58. Weinberg CR, Wilcox AJ, Lie RT (1998) A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 62:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Brien KM, Shi M, Sandler DP, Taylor JA, Zaykin DV, Keller J et al (2016) A family-based, genome-wide association study of young-onset breast cancer: inherited variants and maternally mediated effects. Eur J Hum Genet

  60. Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK et al (2015) Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 107(5):djv036

    Article  PubMed  PubMed Central  Google Scholar 

  61. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65

    Article  PubMed Central  Google Scholar 

  62. Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9(2):179–181

    Article  CAS  Google Scholar 

  63. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000529

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shi M, Umbach DM, Weinberg CR (2013) Case-sibling studies that acknowledge unstudied parents and permit the inclusion of unmatched individuals. Int J Epidemiol 42(1):298–307

    Article  PubMed  Google Scholar 

  65. Weinberg CR (1999) Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet 64:1186–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dittmer S, Kovacs Z, Yuan SH, Siszler G, Kogl M, Summer H et al (2011) TOX3 is a neuronal survival factor that induces transcription depending on the presence of CITED1 or phosphorylated CREB in the transcriptionally active complex. J Cell Sci 124(Pt 2):252–260

    Article  CAS  PubMed  Google Scholar 

  67. Cowper-Sal R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J et al (2012) Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 4(11):1191–1198

    Article  Google Scholar 

  68. Riaz M, Berns EM, Sieuwerts AM, Ruigrok-Ritstier K, de Weerd V, Groenewoud A et al (2012) Correlation of breast cancer susceptibility loci with patient characteristics, metastasis-free survival, and mRNA expression of the nearest genes. Breast Cancer Res Treat 133(3):843–851

    Article  CAS  PubMed  Google Scholar 

  69. Barzan D, Veldwijk MR, Herskind C, Li Y, Zhang B, Sperk E et al (2013) Comparison of genetic variation of breast cancer susceptibility genes in Chinese and German populations. Eur J Hum Genet 21(11):1286–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. ESR1 estrogen receptor 1 [Homo sapiens (human)] (Internet). 22 Dec 2015]

  71. Stevens KN, Vachon CM, Lee AM, Slager S, Lesnick T, Olswold C et al (2011) Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 71(19):6240–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun Y, Ye C, Guo X, Wen W, Long J, Gao YT et al (2015) Evaluation of potential regulatory function of breast cancer risk locus at 6q25.1. Carcinogenesis 37(2):163–168

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jain VK, Turner NC (2012) Challenges and opportunities in the targeting of fibroblast growth factor receptors in breast cancer. Breast Cancer Res 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kawase T, Matsuo K, Suzuki T, Hiraki A, Watanabe M, Iwata H et al (2009) FGFR2 intronic polymorphisms interact with reproductive risk factors of breast cancer: results of a case control study in Japan. Int J Cancer 125(8):1946–1952

    Article  CAS  PubMed  Google Scholar 

  75. Roy R, Chun J, Powell SN (2012) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12(1):68–78

    Article  CAS  Google Scholar 

  76. Dong H, Gao Z, Li C, Wang J, Jin M, Rong H et al (2014) Analyzing 395,793 samples shows significant association between rs999737 polymorphism and breast cancer. Tumor Biol 35(6):6083–6087

    Article  CAS  Google Scholar 

  77. Dite GS, MacInnis RJ, Bickerstaffe A, Dowty JG, Allman R, Apicella C et al (2015) Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev 25(2):359–365

    Article  Google Scholar 

  78. Kraft P (2008) Curses—winner’s and otherwise—in genetic epidemiology. Epidemiology 19(5):649–651 discussion 57-8

    Article  PubMed  Google Scholar 

  79. Machiela MJ, Chen CY, Chen C, Chanock SJ, Hunter DJ, Kraft P (2011) Evaluation of polygenic risk scores for predicting breast and prostate cancer risk. Genet Epidemiol 35(6):506–514

    PubMed  PubMed Central  Google Scholar 

  80. Joshi AD, Lindstrom S, Husing A, Barrdahl M, VanderWeele TJ, Campa D et al (2014) Additive interactions between susceptibility single-nucleotide polymorphisms identified in genome-wide association studies and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium. Am J Epidemiol 180(10):1018–1027

    Article  PubMed  PubMed Central  Google Scholar 

  81. National Cancer Institute (2016) Surveillance, epidemiology, and end results. http://seer.cancer.gov/. Accessed 24 2016

Download references

Acknowledgements

The authors would like to thank Stephanie London and Sophia Harlid for their comments on an early draft of this paper. Genotyping, quality control analysis, and imputation were completed at the Center for Inherited Disease Research, the Genetics Coordinating Center at the University of Washington (Cecelia Laurie, Quenna Wong, Sarah Nelson, and Cathy Laurie).

Funding

This work was supported by the Intramural Research Program of the NIH, the National Institute of Environmental Health Sciences (project Z01-ES044005 to DPS and project Z01-ES102245 to CRW) and Susan G. Komen for the Cure (grant FAS0703856 to CRW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice R. Weinberg.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

All participants provided written or verbal consent, and the study was approved by the National Institute of Environmental Health Sciences and the Copernicus Group Institutional Review Boards. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable clinical standards.

Additional information

Min Shi and Katie M. O’Brien have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., O’Brien, K.M., Sandler, D.P. et al. Previous GWAS hits in relation to young-onset breast cancer. Breast Cancer Res Treat 161, 333–344 (2017). https://doi.org/10.1007/s10549-016-4053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-4053-z

Keywords

Navigation