Skip to main content

Advertisement

Log in

Adiposity is associated with p53 gene mutations in breast cancer

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mutations in the p53 gene are among the most frequent genetic events in human cancer and may be triggered by environmental and occupational exposures. We examined the association of clinical and pathological characteristics of breast tumors and breast cancer risk factors according to the prevalence and type of p53 mutations. Using tumor blocks from incident cases from a case–control study in western New York, we screened for p53 mutations in exons 2–11 using the Affymetrix p53 Gene Chip array and analyzed case–case comparisons using logistic regression. The p53 mutation frequency among cases was 28.1 %; 95 % were point mutations (13 % of which were silent) and the remainder were single base pair deletions. Sixty seven percent of all point mutations were transitions; 24 % of them are G:C>A:T at CpG sites. Positive p53 mutation status was associated with poorer differentiation (OR, 95 % CI 2.29, 1.21–4.32), higher nuclear grade (OR, 95 % CI 1.99, 1.22–3.25), and increased Ki-67 status (OR, 95 % CI 1.81, 1.10–2.98). Cases with P53 mutations were more likely to have a combined ER-positive and PR-negative status (OR, 95 % CI 1.65, 1.01–2.71), and a combined ER-negative and PR-negative status (OR, 95 % CI 2.18, 1.47–3.23). Body mass index >30 kg/m2, waist circumference >79 cm, and waist-to-hip ratio >0.86 were also associated with p53 status; obese breast cancer cases are more likely to have p53 mutations (OR, 95 % CI 1.78, 1.19–2.68). We confirmed that p53 mutations are associated with less favorable tumor characteristics and identified an association of p53 mutation status and adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51(23 Pt 1):6304–6311

    CAS  PubMed  Google Scholar 

  2. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  CAS  PubMed  Google Scholar 

  3. Tian K, Rajendran R, Doddananjaiah M, Krstic-Demonacos M, Schwartz JM (2013) Dynamics of DNA damage induced pathways to cancer. PLoS One 8(9):e72303. doi:10.1371/journal.pone.0072303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629. doi:10.1002/humu.20495

    Article  CAS  PubMed  Google Scholar 

  5. Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espie M, Plassa LF, Cottu P, Marty M, Andre F, Sotiriou C, Pusztai L, de The H (2013) Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 132(5):1227–1231. doi:10.1002/ijc.27767

    Article  CAS  PubMed  Google Scholar 

  6. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. doi:10.1038/nature10933

    CAS  PubMed  Google Scholar 

  8. Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol/Hematol 52(2):103–116. doi:10.1016/j.critrevonc.2004.07.002

    Article  Google Scholar 

  9. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18):4855–4878

    CAS  PubMed  Google Scholar 

  10. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  11. Soussi T, Legros Y, Lubin R, Ory K, Schlichtholz B (1994) Multifactorial analysis of p53 alteration in human cancer: a review. Int J Cancer 57(1):1–9

    Article  CAS  PubMed  Google Scholar 

  12. Biggs PJ, Warren W, Venitt S, Stratton MR (1993) Does a genotoxic carcinogen contribute to human breast cancer? The value of mutational spectra in unravelling the aetiology of cancer. Mutagenesis 8(4):275–283

    Article  CAS  PubMed  Google Scholar 

  13. Uji K, Naoi Y, Kagara N, Shimoda M, Shimomura A, Maruyama N, Shimazu K, Kim SJ, Noguchi S (2014) Significance of TP53 mutations determined by next-generation “deep” sequencing in prognosis of estrogen receptor-positive breast cancer. Cancer Lett 342(1):19–26. doi:10.1016/j.canlet.2013.08.028

    Article  CAS  PubMed  Google Scholar 

  14. Baker L, Quinlan PR, Patten N, Ashfield A, Birse-Stewart-Bell LJ, McCowan C, Bourdon JC, Purdie CA, Jordan LB, Dewar JA, Wu L, Thompson AM (2010) p53 mutation, deprivation and poor prognosis in primary breast cancer. Br J Cancer 102(4):719–726. doi:10.1038/sj.bjc.6605540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lai H, Ma F, Trapido E, Meng L, Lai S (2004) Spectrum of p53 tumor suppressor gene mutations and breast cancer survival. Breast Cancer Res Treat 83(1):57–66. doi:10.1023/B:BREA.0000010699.53742.60

    Article  CAS  PubMed  Google Scholar 

  16. Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IR, Ikdahl T, Karesen R, Borresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9(3):R30. doi:10.1186/bcr1675

    Article  PubMed Central  PubMed  Google Scholar 

  17. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bieche I, Varley J, Bignon Y, Uhrhammer N, Winqvist R, Jukkola-Vuorinen A, Niederacher D, Kato S, Ishioka C, Hainaut P, Borresen-Dale AL (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12(4):1157–1167. doi:10.1158/1078-0432.CCR-05-1029

    Article  CAS  PubMed  Google Scholar 

  18. Aubele M, Werner M, Hofler H (2002) Genetic alterations in presumptive precursor lesions of breast carcinomas. Anal Cell Pathol 24(2–3):69–76

    Article  CAS  PubMed  Google Scholar 

  19. Done SJ, Eskandarian S, Bull S, Redston M, Andrulis IL (2001) p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. J Natl Cancer Inst 93(9):700–704

    Article  CAS  PubMed  Google Scholar 

  20. Kang JH, Kim SJ, Noh DY, Choe KJ, Lee ES, Kang HS (2001) The timing and characterization of p53 mutations in progression from atypical ductal hyperplasia to invasive lesions in the breast cancer. J Mol Med 79(11):648–655. doi:10.1007/s001090100269

    Article  CAS  PubMed  Google Scholar 

  21. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88(22):10124–10128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bressac B, Kew M, Wands J, Ozturk M (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350(6317):429–431. doi:10.1038/350429a0

    Article  CAS  PubMed  Google Scholar 

  23. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350(6317):427–428. doi:10.1038/350427a0

    Article  CAS  PubMed  Google Scholar 

  24. Hussain SP, Hollstein MH, Harris CC (2000) p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment. Ann N Y Acad Sci 919:79–85

    Article  CAS  PubMed  Google Scholar 

  25. Borresen-Dale AL (2003) TP53 and breast cancer. Hum Mutat 21(3):292–300. doi:10.1002/humu.10174

    Article  CAS  PubMed  Google Scholar 

  26. Freudenheim JL, Bonner M, Krishnan S, Ambrosone CB, Graham S, McCann SE, Moysich KB, Bowman E, Nemoto T, Shields PG (2004) Diet and alcohol consumption in relation to p53 mutations in breast tumors. Carcinogenesis 25(6):931–939. doi:10.1093/carcin/bgh088

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann A, Blaszyk H, Kovach JS, Sommer SS (1997) The molecular epidemiology of p53 gene mutations in human breast cancer. Trends Genet 13(1):27–33

    Article  CAS  PubMed  Google Scholar 

  28. Olivier M, Hainaut P (2001) TP53 mutation patterns in breast cancers: searching for clues of environmental carcinogenesis. Semin Cancer Biol 11(5):353–360. doi:10.1006/scbi.2001.0390

    Article  CAS  PubMed  Google Scholar 

  29. Starks AM, Martin DN, Dorsey TH, Boersma BJ, Wallace TA, Ambs S (2013) Household income is associated with the p53 mutation frequency in human breast tumors. PLoS One 8(3):e57361. doi:10.1371/journal.pone.0057361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tao MH, Shields PG, Nie J, Millen A, Ambrosone CB, Edge SB, Krishnan SS, Marian C, Xie B, Winston J, Vito D, Trevisan M, Freudenheim JL (2009) DNA hypermethylation and clinicopathological features in breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat 114(3):559–568. doi:10.1007/s10549-008-0028-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    CAS  PubMed  Google Scholar 

  32. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11(2):174–183. doi:10.1016/S1470-2045(09)70262-1

    Article  CAS  PubMed  Google Scholar 

  33. Tennis M, Krishnan S, Bonner M, Ambrosone CB, Vena JE, Moysich K, Swede H, McCann S, Hall P, Shields PG, Freudenheim JL (2006) p53 Mutation analysis in breast tumors by a DNA microarray method. Cancer Epidemiol Biomark Prev 15(1):80–85. doi:10.1158/1055-9965.EPI-05-0444

    Article  CAS  Google Scholar 

  34. Tao MH, Marian C, Shields PG, Nie J, McCann SE, Millen A, Ambrosone C, Hutson A, Edge SB, Krishnan SS, Xie B, Winston J, Vito D, Russell M, Nochajski TH, Trevisan M, Freudenheim JL (2011) Alcohol consumption in relation to aberrant DNA methylation in breast tumors. Alcohol 45(7):689–699. doi:10.1016/j.alcohol.2010.11.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Conway K, Edmiston SN, Cui L, Drouin SS, Pang J, He M, Tse CK, Geradts J, Dressler L, Liu ET, Millikan R, Newman B (2002) Prevalence and spectrum of p53 mutations associated with smoking in breast cancer. Cancer Res 62(7):1987–1995

    CAS  PubMed  Google Scholar 

  36. Pharoah PD, Day NE, Caldas C (1999) Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80(12):1968–1973. doi:10.1038/sj.bjc.6690628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, Ochs-Balcom HM, Thomson CA, Caan BJ, Tinker LF, Peragallo Urrutia R, Knudtson J, Anderson GL (2015) Overweight, obesity and postmenopausal invasive breast cancer risk. JAMA Oncol. doi:10.1001/jamaoncol.2015.1546

    PubMed Central  Google Scholar 

  38. Cheraghi Z, Poorolajal J, Hashem T, Esmailnasab N, Doosti Irani A (2012) Effect of body mass index on breast cancer during premenopausal and postmenopausal periods: a meta-analysis. PLoS One 7(12):e51446. doi:10.1371/journal.pone.0051446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. van der Kooy K, Rookus MA, Peterse HL, van Leeuwen FE (1996) p53 protein overexpression in relation to risk factors for breast cancer. Am J Epidemiol 144(10):924–933

    Article  PubMed  Google Scholar 

  40. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9):1082–1087. doi:10.1038/nm.2014

    Article  CAS  PubMed  Google Scholar 

  41. Kim EJ, Kho JH, Kang MR, Um SJ (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28(2):277–290. doi:10.1016/j.molcel.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  42. Schug TT, Li X (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43(3):198–211. doi:10.3109/07853890.2010.547211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Deisenroth C, Zhang Y (2011) The ribosomal protein-Mdm2-p53 pathway and energy metabolism: bridging the gap between feast and famine. Genes Cancer 2(4):392–403. doi:10.1177/1947601911409737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20(3):267–275. doi:10.1101/gad.1363206

    Article  CAS  PubMed  Google Scholar 

  45. Huang XF, Chen JZ (2009) Obesity, the PI3K/Akt signal pathway and colon cancer. Obes Rev 10(6):610–616. doi:10.1111/j.1467-789X.2009.00607.x

    Article  CAS  PubMed  Google Scholar 

  46. Ford NA, Dunlap SM, Wheatley KE, Hursting SD (2013) Obesity, independent of p53 gene dosage, promotes mammary tumor progression and upregulates the p53 regulator microRNA-504. PLoS One 8(6):e68089. doi:10.1371/journal.pone.0068089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chen C, Chang YC, Liu CL, Chang KJ, Guo IC (2006) Leptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21WAF1/CIP1. Breast Cancer Res Treat 98(2):121–132. doi:10.1007/s10549-005-9139-y

    Article  CAS  PubMed  Google Scholar 

  48. Figueroa JD, Terry MB, Gammon MD, Vaughan TL, Risch HA, Zhang FF, Kleiner DE, Bennett WP, Howe CL, Dubrow R, Mayne ST, Fraumeni JF Jr, Chow WH (2009) Cigarette smoking, body mass index, gastro-esophageal reflux disease, and non-steroidal anti-inflammatory drug use and risk of subtypes of esophageal and gastric cancers by P53 overexpression. Cancer Causes Control 20(3):361–368. doi:10.1007/s10552-008-9250-6

    Article  PubMed Central  PubMed  Google Scholar 

  49. Zhang ZF, Zeng ZS, Sarkis AS, Klimstra DS, Charytonowicz E, Pollack D, Vena J, Guillem J, Marshall JR, Cordon-Cardo C et al (1995) Family history of cancer, body weight, and p53 nuclear overexpression in Duke’s C colorectal cancer. Br J Cancer 71(4):888–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Slattery ML, Curtin K, Ma K, Edwards S, Schaffer D, Anderson K, Samowitz W (2002) Diet activity, and lifestyle associations with p53 mutations in colon tumors. Cancer Epidemiol Biomark Prev 11(6):541–548

    CAS  Google Scholar 

  51. Ecke TH, Schlechte HH, Gunia S, Lenk SV, Loening SA (2008) Body mass index (BMI) and mutations of tumor suppressor gene p53 (TP53) in patients with urinary bladder cancer. Urol Oncol 26(5):470–473. doi:10.1016/j.urolonc.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  52. Gammon MD, Hibshoosh H, Terry MB, Bose S, Schoenberg JB, Brinton LA, Bernstein JL, Thompson WD (1999) Cigarette smoking and other risk factors in relation to p53 expression in breast cancer among young women. Cancer Epidemiol Biomark Prev 8(3):255–263

    CAS  Google Scholar 

  53. Liu J, Zhang C, Feng Z (2014) Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin 46(3):170–179. doi:10.1093/abbs/gmt144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Dobes P, Podhorec J, Coufal O, Jureckova A, Petrakova K, Vojtesek B, Hrstka R (2014) Influence of mutation type on prognostic and predictive values of TP53 status in primary breast cancer patients. Oncol Rep 32(4):1695–1702. doi:10.3892/or.2014.3346

    CAS  PubMed  Google Scholar 

  55. Meng L, Lin L, Fresno M, Morales AR, Nadji M (1999) Frequency and pattern of p53 gene mutation in a cohort of Spanish women with node-negative breast cancer. Int J Oncol 15(3):555–558

    CAS  PubMed  Google Scholar 

  56. Nagai MA, Schaer Barbosa H, Zago MA, Araujo Silva W Jr, Nishimoto IN, Salaorni S, Guerreiro Costa LN, Silva Araujo M, Caldas Oliveira AG, Mourao Neto M, Brentani MM (2003) TP53 mutations in primary breast carcinomas from white and African-Brazilian patients. Int J Oncol 23(1):189–196

    CAS  PubMed  Google Scholar 

  57. Chiaretti S, Tavolaro S, Marinelli M, Messina M, Del Giudice I, Mauro FR, Santangelo S, Piciocchi A, Peragine N, Truong S, Patten N, Ghia EM, Torrente I, De Propris MS, Nanni M, Lawrence J, Guarini A, Foa R (2011) Evaluation of TP53 mutations with the AmpliChip p53 research test in chronic lymphocytic leukemia: correlation with clinical outcome and gene expression profiling. Genes Chromosom Cancer 50(4):263–274. doi:10.1002/gcc.20852

    CAS  PubMed  Google Scholar 

  58. Lumachi F, Marino F, Varotto S, Basso U (2009) Oligonucleotide probe array for p53 gene alteration analysis in DNA from formalin-fixed paraffin-embedded breast cancer tissues. Ann N Y Acad Sci 1175:89–92. doi:10.1111/j.1749-6632.2009.04969.x

    Article  CAS  PubMed  Google Scholar 

  59. Robles AI, Harris CC (2010) Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2(3):a001016. doi:10.1101/cshperspect.a001016

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by DOD Breast Cancer Research Program (DAMD 179616202, DAMD 17030446) and United States Public Health Service (USPHS) Grant Numbers K07CA136969 and R01CA092040 from the National Cancer Institute and P50-AA09802 from the National Institute on Alcohol Abuse and Alcoholism. These studies were conducted in part at the Lombardi Comprehensive Cancer Center Histopathology & Tissue Shared resource which is supported in part by NIH/NCI Grant P30-CA051008. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Marian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal rights

All human subjects research was approved by the appropriate Institutional Review Boards and complies with current laws.

Additional information

Heather M. Ochs-Balcom and Catalin Marian have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochs-Balcom, H.M., Marian, C., Nie, J. et al. Adiposity is associated with p53 gene mutations in breast cancer. Breast Cancer Res Treat 153, 635–645 (2015). https://doi.org/10.1007/s10549-015-3570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3570-5

Keywords

Navigation