Skip to main content

Advertisement

Log in

Investigation of elemene-induced reversal of tamoxifen resistance in MCF-7 cells through oestrogen receptor α (ERα) re-expression

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Endocrine therapy is an important therapeutic approach for the treatment of oestrogen receptor (ER)-positive breast cancer. However, a number of these endocrine therapies can fail when the tumour loses its ER expression during treatment. To date, few studies have explored the potential clinical significance of traditional Chinese medicine in inducing the reversal of resistance to endocrine therapy in breast cancers. We used the ERα-negative MCF7 breast cancer cell line to create a tamoxifen (TAM)-resistant cell line, MCF7/TAM cells. After treating MCF7/TAM cells with ELE to induce the re-expression of ERα, we investigated the role and molecular mechanisms by which elemene (ELE) promotes the reversal of resistance to endocrine therapy. We discovered that treatment with 10 μg/ml ELE restored the sensitivity of MCF7/TAM cells to TAM. RT-PCR analysis revealed that ELE treatment upregulated ERα mRNA levels in MCF7/TAM cells, and immunohistochemistry confirmed the upregulation of ERα expression. Western blot analysis revealed that ELE treatment decreased the protein expression levels of Ras, MEK1/2 and p-ERK1/2 in MCF7/TAM cells. The loss of ERα expression was the primary reason for TAM resistance in MCF7 cells. The ELE-induced reversal of TAM resistance was mediated by the upregulation of ERα mRNA and the re-expression of ERα through the MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnston SR (1997) Acquired tamoxifen resistance in human breast cancer-potential mechanisms and clinical implications. Anticancer Drugs 8:911–930

    Article  PubMed  CAS  Google Scholar 

  2. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

    PubMed  CAS  Google Scholar 

  3. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  4. Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jordan N, Wakeling AE, Nicholson RI (2003) The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endo Crinol 144:5105–5117

    CAS  Google Scholar 

  5. Johnston SR (2009) Enhancing the efficacy of hormonal agents with selected targeted agents. Clin Breast Cancer 9:28–36

    Article  Google Scholar 

  6. Zhang F, Xu L, Qu X, Zhao M, Jin B, Kang J, Liu Y, Hu X (2011) Synergistic antitumor effect of β-elemene and etoposide is mediated via induction of cell apoptosis and cell cycle arrest in non-small cell lung carcinoma cells. Mol Med Report 4:1189–1193

    PubMed  CAS  Google Scholar 

  7. Wang G, Li X, Huang F, Zhao J, Ding H, Cunningham C, Coad JE, Flynn DC, Reed E, Li QQ (2005) Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell Mol Life Sci 62:881–893

    Article  PubMed  CAS  Google Scholar 

  8. Li G, Xie B, Li X, Chen Y, Wang Q, Xu Y, Xu-Welliver M, Zou L (2012) Down-regulation of survivin and hypoxia-inducible factor-1α by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenograft. Cancer Biother Radiopharm 27:56–64

    Article  PubMed  CAS  Google Scholar 

  9. Hu J, Jin W, Yang PM (2004) Reversal of resistance to adriamycin in human breast cancer cell line MCF-7/ADM by beta-elemene. Zhonghua Zhong Liu Za Zhi 26:268–270

    Google Scholar 

  10. Ma HL, Zhou XJ, Liu J (2008) Experimental study on β-elemene combined with tamoxifen inhibiting the apoptosis of breast cancer cell strain MCF-7. Mod Oncol 116:510–514

    Google Scholar 

  11. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66:3903–3911

    Article  PubMed  CAS  Google Scholar 

  12. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D (2001) Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15:1344–1359

    Article  PubMed  CAS  Google Scholar 

  13. Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D (2007) Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res 13:7029–7036

    Article  PubMed  CAS  Google Scholar 

  14. Santen RJ, Song RX, Zhang Z, Yue W, Kumar R (2004) Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal therapy in breast cancer. Clin Cancer Res 10:337–345

    Article  Google Scholar 

  15. Pan GD, Yang JQ, Yan LN, Chu GP, Liu Q, Xiao Y, Yuan L (2009) Reversal of multi-drug resistance by pSUPER-shRNA-mdr1 in vivo and in vitro. World J Gastroenterol 5:431–440

    Article  Google Scholar 

  16. Chen FP, Hsu T, Hu CH, Wang WD, Wang KC, Teng LF (2006) Expression of estrogen receptors alfa and beta mRNA and alkaline phosphatase in the differentiation of osteoblasts from elderly postmenopausal women: comparison with osteoblasts from osteosarcoma cell lines. Taiwan J Obstet Gynecol 45:307–312

    Article  PubMed  Google Scholar 

  17. Fu ZY, Han JX, Zhang HY (2007) Effect s of emodin on gene expression profile in small cell lung cancer NCI-H446 cell. Chin Med J 120:1710–1715

    PubMed  CAS  Google Scholar 

  18. Clark AS, West K, Streicher S, Dennis PA (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717

    PubMed  CAS  Google Scholar 

  19. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rap id estrogen action of MAPK activation by ERα-Shc association and Shc path-way activation. Mol Endocrinol 16:116–127

    Article  PubMed  CAS  Google Scholar 

  20. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    PubMed  CAS  Google Scholar 

  21. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20:4209–4218

    Article  PubMed  CAS  Google Scholar 

  22. Jelovac D, Sabnis G, Long BJ, Macedo L, Goloubeva OG, Brodie AM (2005) Activation of mitogen-activated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole. Cancer Res 65:5380–5389

    Article  PubMed  CAS  Google Scholar 

  23. Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M (2005) Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer 12:S75–S84

    Article  PubMed  CAS  Google Scholar 

  24. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8:47–61

    Article  PubMed  CAS  Google Scholar 

  25. Yao YQ, Xu YH, Lu J, Zhou HY, Wang YZ (2008) Effect of p38 MAPK on elemene-induced cell cycle arrest in C6 glioblastoma cells. Zhonghua Yi Xue Za Zhi 88:56–58

    Google Scholar 

  26. Li L, Xu L, Qu X, Zhao M, Yu P, Kang J, Liu Y, Hu X (2011) Cbl-regulated Akt and ERK signals are involved in β-elemene-induced cell apoptosis in lung cancer cells. Mol Med Report 4:1243–1246

    PubMed  CAS  Google Scholar 

  27. Gruvberger-Saal SK, Bendahl PO, Saal LH, Laakso M, Hegardt C, Edén P, Peterson C, Malmström P, Isola J, Borg A, Fernö M (2007) Estrogen receptor beta expression is associated with tamoxifen response in ERalpha-negative breast carcinoma. Clin Cancer Res 13:1987–1994

    Article  PubMed  CAS  Google Scholar 

  28. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277:1508–1510

    Article  PubMed  CAS  Google Scholar 

  29. Hodges LC, Cook JD, Lobenhofer EK, Li L, Bennett L, Bushel PR, Aldaz CM, Afshari CA, Walker CL (2003) Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells. Mol Cancer Res 1:300–311

    PubMed  CAS  Google Scholar 

  30. Ström A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor β inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci 101:1566–1571

    Article  PubMed  Google Scholar 

  31. Borgquist S, Holm C, Stendahl M, Anagnostaki L, Landberg G, Jirström K (2008) Oestrogen receptors alpha and beta show different associations to clinicopathological parameters and their co-expression might predict a better response to endocrine treatment in breast cancer. J Clin Pathol 61:197–203

    Article  PubMed  CAS  Google Scholar 

  32. Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK, Fuqua SA (2004) Low levels of estrogen receptor beta protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res 10:7490–7499

    Article  PubMed  CAS  Google Scholar 

  33. Iwao K, Miyoshi Y, Egawa C, Ikeda N, Tsukamoto F, Noguchi S (2000) Quantitative analysis of estrogen receptor-alpha and -beta messenger RNA expression in breast carcinoma by real-time polymerase chain reaction. Cancer 89:1732–1738

    Article  PubMed  CAS  Google Scholar 

  34. Lapidus RG, Nass SJ, Butash KA, Parl FF, Weitzman SA, Graff JG, Herman JG, Davidson NE (1998) Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res 58(12):2515–2519

    PubMed  CAS  Google Scholar 

  35. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    PubMed  CAS  Google Scholar 

  36. Zhao L, Wang L, Jin F, Ma W, Ren J, Wen X, He M, Sun M, Tang H, Wei M (2009) Silencing of estrogen receptor alpha(ERalpha) gene by promoter hypermethylation is a frequent event in Chinese women with sporadic breast cancer. Breast Cancer Res Treat 117:253–259

    Article  PubMed  CAS  Google Scholar 

  37. Kawai H, Li H, Avraham S, Jiang S, Avraham HK (2003) Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int J Cancer 107:353–358

    Article  PubMed  CAS  Google Scholar 

  38. Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, Di GH, Shen ZZ, Shao ZM (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134:883–890

    Article  PubMed  CAS  Google Scholar 

  39. El-Osta A, Wolffe AP (2000) DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 9:63–75

    PubMed  CAS  Google Scholar 

  40. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Chaohui Wang, Ling Li and Yan Wang from the Central Laboratory of the Second Affiliated Hospital of Dalian Medical University for providing technical consultation for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Additional information

Zhang Bin and Zhang Xia contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Zhang, X., Tang, B. et al. Investigation of elemene-induced reversal of tamoxifen resistance in MCF-7 cells through oestrogen receptor α (ERα) re-expression. Breast Cancer Res Treat 136, 399–406 (2012). https://doi.org/10.1007/s10549-012-2263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2263-6

Keywords

Navigation