Skip to main content

Advertisement

Log in

Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Several adverse effects of chemotherapy treatments have been described, and most of these effects are associated with direct interactions between blood cells and indirect effects generated during the oxidative metabolism of antineoplastic drugs. In this study we evaluated the oxidative systemic status and hematological profiles of breast cancer patients with advanced ductal infiltrative carcinoma treated with doxorubicin (DOX) or paclitaxel (PTX) within 1 h after chemotherapy. Blood analyses included evaluation of hemogram, pro-oxidative markers, and antioxidant status. The results showed that advanced breast cancer diseased (AD) patients without previous chemotherapy presented anemia and high oxidative stress status characterized by elevated levels of lipid peroxidation and nitric oxide, and reduced catalase activity when compared with controls. DOX-treated patients exhibited increased anemia and reduced antioxidant status, which was revealed by decreases in reduced glutathione levels and the total antioxidant capacity of plasma; however, these changes did not lead to further increases in lipid peroxidation or carbonyl proteins when compared with the AD group. PTX-treated patients also showed increased anemia, lactate dehydrogenase leakage, and enhanced lipid peroxidation. These data reveal for the first time that patients subjected to chemotherapy with DOX or PTX present immediate systemic oxidative stress and red blood cell oxidative injury with anemia development. These findings provide a new perspective on the systemic redox state of AD and patients subjected to chemotherapy regarding oxidative stress enhancement and its possible involvement in the aggravation of chronic anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Advanced breast cancer patients

DOX:

Doxorubicin

PTX:

Paclitaxel

LDH:

Lactate dehydrogenase

RBC:

Red blood cells

TNM:

Tumor node metastasis classification

MCV:

Mean cellular volume

SOD:

Superoxide dismutase

GSH:

Reduced glutathione

TCA:

Trichloroacetic acid

TRAP:

Total antioxidant capacity

ABAP:

2,2′Azobis

RLU:

Relative light unities

NO:

Nitric oxide

TBARS:

Thiobarbituric reactive substances

MDA:

Malondialdehyde

DNPH:

Dinitrophenylhydrazine

AUC:

Area under the curve

LDL:

Low density lipoprotein

CL:

Chemiluminescence

V0:

Initial velocity of CL reaction

References

  1. Loft S, Poulsen HE (1996) Cancer risk and oxidative DNA damage in man. J Mol Med 74:297–312

    Article  PubMed  CAS  Google Scholar 

  2. Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115:81–103

    Article  PubMed  CAS  Google Scholar 

  3. National Comprehensive Cancer Network (NCCN) (2009) NCCN clinical practice guidelines in oncology: cancer and chemotherapy-induced anemia. NCCN, USA, vol 2, p 47

  4. Saulter KH, Acharia CR, Walters KS, Redman R, Anguiano A, Garman KS, Anders CK, Mukherjee S, Dressman HK, Barry WT, Marcom KP, Olson J, Nevins JR, Potti A (2008) An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. Plos One 3(4):e1908

    Article  Google Scholar 

  5. Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute Adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidant s, inhibition of TNF-α expression. BMC Pharmacol 3:16

    Article  PubMed  Google Scholar 

  6. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclins: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharm Rev 56(2):185–230

    Article  PubMed  CAS  Google Scholar 

  7. Ramanathan B, Jan KY, Chen CH, Hour TZ, Yu HJ, Pu YS (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65(18):8455–8460

    Article  PubMed  CAS  Google Scholar 

  8. Doroshow JH, Davies KJA (1986) Redox cycling of anthracyclins by cardiac mitochondria: formation of superoxide anion, hydrogen peroxide and hydroxyl radical. J Biol Chem 261(7):3068–3074

    PubMed  CAS  Google Scholar 

  9. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  PubMed  CAS  Google Scholar 

  10. Schrijvers D (2003) Role of red blood cells in pharmacokinetics of chemotherapeutic agents. Clin Pharmacokinet 42(9):779–791

    Article  PubMed  CAS  Google Scholar 

  11. Alexandre J, Hu Y, Lu W, Pelicano H, Huang P (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67(8):3512–3517

    Article  PubMed  CAS  Google Scholar 

  12. Hadzic T, Aykin-Burns N, Zhu Y, Mitchell Z, Coleman MC, Leick K, Jacobson GM, Spitz DR (2010) Paclitaxel combined with inhibitors of glucose, hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radic Biol Med 48:1024–1033

    Article  PubMed  CAS  Google Scholar 

  13. Fukui M, Yamabe N, Zhu BT (2010) Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur J Cancer 46(10):1882–1891

    Article  PubMed  CAS  Google Scholar 

  14. Mark M, Walter R, Osian-Meredith D, Reinhart WH (2001) Commercial taxane formulations induce stomatocytosis and increase blood viscosity. Br J Pharmacol 134:1207–1214

    Article  PubMed  CAS  Google Scholar 

  15. Iiýasova D, Mixon G, Wang F, Marcom PK, Marks J, Spasojevich I, Craft N, Arredondo F, Digiulio R (2009) Markers of oxidative status in a clinical model of oxidative assault: a pilot study in human blood following doxorubicin administration. Biomarkers 14(5):321–325

    Article  Google Scholar 

  16. Chala E, Manes C, Iliades H, Skaragkas G, Mouratidou D, Kapantais E (2006) Insulin resistance, growth factors and cytokine levels in overweight women with breast cancer before and after chemotherapy. Hormones 5(2):137–146

    PubMed  Google Scholar 

  17. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University, New York

    Google Scholar 

  18. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  19. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:474–496

    Article  Google Scholar 

  20. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  21. Repetto M, Reides C, Carretero MLG, Costa M, Griemberg G, Llesuy S (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 225:107–117

    Article  Google Scholar 

  22. Simão ANC, Suzukawa AA, Casado MF, Oliveira RD, Guarnier FA, Cecchini F (2006) Genistein abrogates pre-hemolytic and oxidative stress damage induced by 2,2′-azobis (amidinopropane). Life Sci 78:1202–1210

    Article  Google Scholar 

  23. Gonzales-Flecha B, Lleswy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Radic Biol Med 10:93–100

    Article  Google Scholar 

  24. Panis C, Mazzuco TL, Costa CZF, Victorino VJ, Tatakihara VLH, Yamauchi LM, Yamada-Ogatta SF, Cecchini R, Pinge-Filho P (2011) Trypanosoma cruzi: effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide and iNOS expression in cardiac tissue in the acute phase of infection in mice. Exp Parasitol 127:58–65

    Article  PubMed  CAS  Google Scholar 

  25. Oliveira JA, Cecchini R (2000) Oxidative stress of liver in hamsters infected with Leishmania (L.) chagasic. J Parasitol 86(5):1067–1072

    Article  PubMed  CAS  Google Scholar 

  26. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994(233):357–363

    Article  Google Scholar 

  27. Miller GL (1959) Protein determination for large numbers of samples. Anal Chem 31:964

    Article  CAS  Google Scholar 

  28. Bates DA, Winterbourn CC (1982) Reactions of Adriamycin with haemoglobin. Superoxide dismutase indirectly inhibits reactions of the adriamycin semiquinone. Biochem J 203:155–160

    PubMed  CAS  Google Scholar 

  29. Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, Weill B, Goldwasser F (2006) Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 119:41–48

    Article  PubMed  CAS  Google Scholar 

  30. Casado MF, Cecchini AL, Simão ANC, Oliveira RD, Cecchini R (2007) Free radical mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence. Food Chem Toxicol 45:945–952

    Article  PubMed  CAS  Google Scholar 

  31. Lores-Arnais S, Llesuy S (1993) Oxidative stress in mouse heart by antitumoral drugs: a comparative study of doxorubicin, mitoxantrone. Toxicology 77(1–2):31–38

    Google Scholar 

  32. Dumon MF, Freneix-Clerc M, Carbonneau MA, Thomas MJ, Perromat A, Clerc M (1994) Demonstration of the anti-lipid peroxidation effect of 3′,5′,7′, trihydroxy-4′ methoxy flavone rutinoside: in vitro study. Ann Biol Clin 52(4):265–270

    CAS  Google Scholar 

  33. Barbosa DS, Cecchini R, El Kadri MZ, Dichi I (2003) Decrease oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19:837–841

    Article  PubMed  CAS  Google Scholar 

  34. Fossey J, Lefort D, Sorba J (1995) Free Radicals in Organic Chemistry. Wiley, New York

    Google Scholar 

  35. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  36. Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23

    Article  PubMed  CAS  Google Scholar 

  37. Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17:107–118

    Article  PubMed  CAS  Google Scholar 

  38. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521–534

    Article  PubMed  CAS  Google Scholar 

  39. Abdelmagid SA, Too CKL (2008) Prolactin and estrogen up-regulate carboxypeptidase-D to promote nitric oxide production and survival of MCF-7 breast cancer cells. Endocrinology 149:4821–4828

    Article  PubMed  CAS  Google Scholar 

  40. Saad SY, Najjar TA, Alashari M (2004) Cardiotoxicity of doxorubicin/paclitaxel combination in rats: effect of sequence and timing administration. J Biochem Mol Toxicol 18(2):78–86

    Article  PubMed  CAS  Google Scholar 

  41. Awasthi S, Sharma R, Singhal SS, Zimniak P, Awasthi Y (2002) RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab Dispos 30(12):1300–1310

    Article  PubMed  CAS  Google Scholar 

  42. Henderson IC, Berry DA, Demetri GD et al (2003) Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21:976–983

    Article  PubMed  CAS  Google Scholar 

  43. Pfizer. Doxorubicin hydrochloride for injection. Available in: www.pfizer.com, access in Feb 22, 2011.

  44. Colombo T, Broggini M, Garattini S, Donell MG (1981) Differential adryamicin distribution to blood components. Eur J Drug Metab Pharmacokinet 6(2):115–122

    Article  PubMed  CAS  Google Scholar 

  45. Lang PA, Huober J, Bachman C, Kempe DS, Sobiesiak M, Akel A, Niemoeller OM, Dreischer P, Eisele K, Klarl BA, Gulbins E, Lang F, Wieder T (2006) Stimulation of erythrocyte phosphatidyl serine exposure by paclitaxel. Cell Physiol Biochem 18:151–164

    Article  PubMed  CAS  Google Scholar 

  46. Peres PS, Terra VA, Guarnier FA, Cecchini R, Cecchini AL (2011) Photoaging and chronological aging profile: understanding oxidation of the skin. J Photochem Photobiol B 103(2):93–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jesus Vargas for his exceptional technical assistance, and the Fundação Araucária, CNPq, and CAPES for providing financial support.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cecchini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panis, C., Herrera, A.C.S.A., Victorino, V.J. et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133, 89–97 (2012). https://doi.org/10.1007/s10549-011-1693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1693-x

Keywords

Navigation