Skip to main content

Advertisement

Log in

Clinicopathologic and molecular significance of phospho-Akt expression in early invasive breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Akt/PKB serine/threonine kinase is a leading signalling modulator for several cellular processes including metabolism, growth, proliferation and survival. However, complexity and diversity in the upstream/downstream arms of Akt pathway, as recent genetic studies reported, challenge considerably the evolvement of effective targeted therapies. The aim was to study the expression of phospho-Akt1 (pAkt) in breast cancer (BC), with respect to different component proteins upstream/downstream of Akt pathway activation, clinicopathologic parameters and patients’ outcome. pAkt (Ser473) was evaluated by immunohistochemistry, on tissue microarrays containing 1,202 early invasive BC with long-term clinical follow-up. Seventy-six percent of the studied tumours overexpressed pAkt, where it was associated with expression of oestrogen and androgen receptors, PIK3CA, cytokeratin (CK)18, CK19 and PTEN. Loss of pAkt was correlated with high grade, CK5/6, p53 and high Ki67 labelling index. Higher proportions of luminal tumours were pAkt positive relative to triple negative/basal subtypes. However, pAkt overexpression was not associated with breast cancer specific (BCSS) or metastasis-free survival (MFS). Four tumour phenotypes were identified based on PIK3CA and pAkt expression, with substantial proportions being PIK3CA/pAkt+ or PIK3CA+/pAkt. These four combinatorial phenotypes were significantly associated with BCSS (p = 0.001) and MFS (p = 0.002). Although pAKT is an oncogene correlated with poor prognostic variables, it was not a prognostic marker. Combinatorial phenotypic groups of PIK3CA/pAkt denoted functional complexity, at translational level, within the upstream and downstream arms of Akt activation with significant impact on patients’ outcome. These findings may help development more adequate therapeutic regimens for specific subgroups of this key cancer pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chin YR, Toker A (2009) Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 21:470–476

    Article  PubMed  CAS  Google Scholar 

  2. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  3. Arcaro A, Guerreiro AS (2007) The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr Genomics 8:271–306

    Article  PubMed  CAS  Google Scholar 

  4. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    Article  PubMed  CAS  Google Scholar 

  5. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  PubMed  CAS  Google Scholar 

  6. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  7. Jiang BH, Liu LZ (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784:150–158

    PubMed  CAS  Google Scholar 

  8. Vogt PK, Aoki M, Bottoli I, Chang HW, Fu S, Hecht A, Iacovoni JS, Jiang BH, Kruse U (1999) A random walk in oncogene space: the quest for targets. Cell Growth Differ 10:777–784

    PubMed  CAS  Google Scholar 

  9. Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

    Article  PubMed  CAS  Google Scholar 

  10. Matheny RW Jr, Adamo ML (2009) Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood) 234:1264–1270

    Article  CAS  Google Scholar 

  11. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  12. Paez J, Sellers WR (2003) PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 115:145–167

    Article  PubMed  CAS  Google Scholar 

  13. Jiang B-H, Liu L-Z (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta: Proteins Proteomics 1784:150–158

    Article  CAS  Google Scholar 

  14. Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84:5034–5037

    Article  PubMed  CAS  Google Scholar 

  15. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444

    Article  PubMed  CAS  Google Scholar 

  16. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  PubMed  CAS  Google Scholar 

  17. Al-Bazz YO, Brown BL, Underwood JC, Stewart RL, Dobson PR (2009) Immuno-analysis of phospho-Akt in primary human breast cancers. Int J Oncol 35:1159–1167

    PubMed  CAS  Google Scholar 

  18. Blanco-Aparicio C, Renner O, Leal JFM, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    Article  PubMed  CAS  Google Scholar 

  19. Shtilbans V, Wu M, Burstein DE (2008) Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 12:153–160

    Article  PubMed  Google Scholar 

  20. Wu Y, Mohamed H, Chillar R, Ali I, Clayton S, Slamon D, Vadgama JV (2008) Clinical significance of Akt and HER2/neu overexpression in African-American and Latina women with breast cancer. Breast Cancer Res 10:R3

    Article  PubMed  Google Scholar 

  21. Frogne T, Laenkholm AV, Lyng MB, Henriksen KL, Lykkesfeldt AE (2009) Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors. Breast Cancer Res 11:R11

    Article  PubMed  Google Scholar 

  22. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, Hennessy BT, Tseng H, Pochanard P, Kim SY, Dunn IF, Schinzel AC, Sandy P, Hoersch S, Sheng Q, Gupta PB, Boehm JS, Reiling JH, Silver S, Lu Y, Stemke-Hale K, Dutta B, Joy C, Sahin AA, Gonzalez-Angulo AM, Lluch A, Rameh LE, Jacks T, Root DE, Lander ES, Mills GB, Hahn WC, Sellers WR, Garraway LA (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16:21–32

    Article  PubMed  CAS  Google Scholar 

  23. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091

    Article  PubMed  CAS  Google Scholar 

  24. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2:416–422

    Article  PubMed  CAS  Google Scholar 

  25. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JFR, Macmillan D, Blamey RW, Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350

    Article  PubMed  CAS  Google Scholar 

  26. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA, Evans AJ, Blamey R, Reis-Filho JS, Foulkes WD, Ellis IO (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15:2302–2310

    Article  PubMed  CAS  Google Scholar 

  27. Albasri A, Seth R, Jackson D, Benhasouna A, Crook S, Nateri AS, Chapman R, Ilyas M (2009) C-terminal tensin-like (CTEN) is an oncogene which alters cell motility possibly through repression of E-cadherin in colorectal cancer. J Pathol 218:57–65

    Article  PubMed  CAS  Google Scholar 

  28. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  29. Bose S, Chandran S, Mirocha JM, Bose N (2006) The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 19:238–245

    Article  PubMed  CAS  Google Scholar 

  30. Panigrahi AR, Pinder SE, Chan SY, Paish EC, Robertson JF, Ellis IO (2004) The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol 204:93–100

    Article  PubMed  CAS  Google Scholar 

  31. Gershtein ES, Scherbakov AM, Shatskaya VA, Kushlinsky NE, Krasil’nikov MA (2007) Phosphatidylinositol 3-kinase/AKT signalling pathway components in human breast cancer: clinicopathological correlations. Anticancer Res 27:1777–1782

    PubMed  CAS  Google Scholar 

  32. Florena AM, Tripodo C, Guarnotta C, Ingrao S, Porcasi R, Martorana A, Lo Bosco G, Cabibi D, Franco V (2007) Associations between Notch-2, Akt-1 and HER2/neu expression in invasive human breast cancer: a tissue microarray immunophenotypic analysis on 98 patients. Pathobiology 74:317–322

    Article  PubMed  CAS  Google Scholar 

  33. Al-Bazz YO, Underwood JCE, Brown BL, Dobson PRM (2009) Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur J Cancer 45:694–704

    Article  PubMed  CAS  Google Scholar 

  34. Aleskandarany MA, Green AR, Rakha EA, Mohammed RA, Elsheikh SE, Powe DG, Paish EC, Macmillan RD, Chan S, Ahmed SI, Ellis IO (2010) Growth fraction as a predictor of response to chemotherapy in node negative breast cancer. Int J Cancer 126(7):1761–1769

    CAS  Google Scholar 

  35. Basu A (2008) Molecular targets of breast cancer: AKTing in concert. Breast Cancer 2:11–16

    PubMed  CAS  Google Scholar 

  36. Zaczek A, Brandt B, Bielawski KP (2005) The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the consequences for therapeutic approaches. Histol Histopathol 20:1005–1015

    PubMed  CAS  Google Scholar 

  37. Shi W, Zhang X, Pintilie M, Ma N, Miller N, Banerjee D, Tsao MS, Mak T, Fyles A, Liu FF (2003) Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer 104:195–203

    Article  PubMed  CAS  Google Scholar 

  38. Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98:7200–7205

    Article  PubMed  CAS  Google Scholar 

  39. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21:307–315

    Article  PubMed  CAS  Google Scholar 

  40. Tokunaga E, Kataoka A, Kimura Y, Oki E, Mashino K, Nishida K, Koga T, Morita M, Kakeji Y, Baba H, Ohno S, Maehara Y (2006) The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42:629–635

    Article  PubMed  CAS  Google Scholar 

  41. Collett K, Hartveit F, Skjaerven R, Maehle BO (1996) Prognostic role of oestrogen and progesterone receptors in patients with breast cancer: relation to age and lymph node status. J Clin Pathol 49:920–925

    Article  PubMed  CAS  Google Scholar 

  42. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8:393–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Aleskandarany and M. Ahmed are funded by the Ministry of Higher Education (Egypt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleskandarany, M.A., Rakha, E.A., Ahmed, M.A. et al. Clinicopathologic and molecular significance of phospho-Akt expression in early invasive breast cancer. Breast Cancer Res Treat 127, 407–416 (2011). https://doi.org/10.1007/s10549-010-1012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1012-y

Keywords

Navigation