Skip to main content

Advertisement

Log in

SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We have previously shown that the anti-proliferative effect of retinoic acid in human breast cancer cell line MCF-7 is dependent on HES-1 expression. Here we show that retinoic acid induces HES-1 expression via upregulation of transcription factor SOX9. By expressing a dominant negative form of SOX9, disrupting endogenous SOX9 activity, the retinoic acid-induced HES-1 mRNA expression was inhibited. We found an enhancer regulating HES-1 expression: two SOX9 binding sites upstream of the HES-1 gene that were capable of binding SOX9 in vitro. By performing chromatin immunoprecipitation, we showed that SOX9 binding to the HES-1 enhancer was induced by retinoic acid in vivo. In reporter assays, transfection of a SOX9 expression plasmid increased the activity of the HES-1 enhancer. The enhancer responded to retinoic acid; furthermore, the expression of a dominant negative SOX9 abolished this response. Taken together, we present here a novel transcriptional mechanism in regulating hormone-dependent cancer cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross SA, McCaffery PJ, Drager UC, De Luca LM (2000) Retinoids in embryonal development. Physiol Rev 80(3):1021–1054

    CAS  PubMed  Google Scholar 

  2. Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H (2007) RAR and RXR modulation in cancer and metabolic disease. Natl Rev 6(10):793–810

    Article  CAS  Google Scholar 

  3. Niles RM (2000) Vitamin A and cancer. Nutrition 16(7–8):573–576

    Article  CAS  PubMed  Google Scholar 

  4. Clarke N, Germain P, Altucci L, Gronemeyer H (2004) Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med 6(25):1–23. doi:10.1017/S1462399404008488

    Article  PubMed  Google Scholar 

  5. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10(9):940–954

    CAS  PubMed  Google Scholar 

  6. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    CAS  PubMed  Google Scholar 

  7. Dilworth FJ, Chambon P (2001) Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20(24):3047–3054. doi:10.1038/sj.onc.1204329

    Article  CAS  PubMed  Google Scholar 

  8. Niles RM (2000) Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer. Nutrition 16(11–12):1084–1089

    Article  CAS  PubMed  Google Scholar 

  9. Preisler HD, Gopal V, Banavali SD, Finke D, Bokari SA (1992) Multiparameter assessment of the cell cycle effects of bioactive and cytotoxic agents. Cancer Res 52(15):4090–4095

    CAS  PubMed  Google Scholar 

  10. Ueda H, Takenawa T, Millan JC, Gesell MS, Brandes D (1980) The effects of retinoids on proliferative capacities and macromolecular synthesis in human breast cancer MCF-7 cells. Cancer 46(10):2203–2209. doi:10.1002/1097-0142(19801115)46:10<2203::AID-CNCR2820461017>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  11. Fontana JA, Mezu AB, Cooper BN, Miranda D (1990) Retinoid modulation of estradiol-stimulated growth and of protein synthesis and secretion in human breast carcinoma cells. Cancer Res 50(7):1997–2002

    CAS  PubMed  Google Scholar 

  12. Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA (1997) Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res 57(13):2642–2650

    CAS  PubMed  Google Scholar 

  13. Sheikh MS, Shao ZM, Chen JC, Hussain A, Jetten AM, Fontana JA (1993) Estrogen receptor-negative breast cancer cells transfected with the estrogen receptor exhibit increased RAR alpha gene expression and sensitivity to growth inhibition by retinoic acid. J Cell Biochem 53(4):394–404. doi:10.1002/jcb.240530417

    Article  CAS  PubMed  Google Scholar 

  14. Zhu WY, Jones CS, Kiss A, Matsukuma K, Amin S, De Luca LM (1997) Retinoic acid inhibition of cell cycle progression in MCF-7 human breast cancer cells. Exp Cell Res 234(2):293–299. doi:10.1006/excr.1997.3589

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Ostrowski J, Reczek P, Brown P (2001) The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene 20(55):8025–8035. doi:10.1038/sj.onc.1204911

    Article  CAS  PubMed  Google Scholar 

  16. Strom A, Arai N, Leers J, Gustafsson JA (2000) The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17beta-estradiol on breast cancer cell lines. Oncogene 19(51):5951–5953. doi:10.1038/sj.onc.1203990

    Article  CAS  PubMed  Google Scholar 

  17. Hartman J, Muller P, Foster JS, Wimalasena J, Gustafsson JA, Strom A (2004) HES-1 inhibits 17beta-estradiol and heregulin-beta1-mediated upregulation of E2F–1. Oncogene 23(54):8826–8833. doi:10.1038/sj.onc.1208139

    Article  CAS  PubMed  Google Scholar 

  18. Muller P, Kietz S, Gustafsson JA, Strom A (2002) The anti-estrogenic effect of all-trans-retinoic acid on the breast cancer cell line MCF-7 is dependent on HES-1 expression. J Biol Chem 277(32):28376–28379. doi:10.1074/jbc.C200340200

    Article  CAS  PubMed  Google Scholar 

  19. Castella P, Sawai S, Nakao K, Wagner JA, Caudy M (2000) HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3-helix 4 domain in transcription repression. Mol Cell Biol 20(16):6170–6183. doi:10.1128/MCB.20.16.6170-6183.2000

    Article  CAS  PubMed  Google Scholar 

  20. Kunnimalaiyaan M, Yan S, Wong F, Zhang YW, Chen H (2005) Hairy Enhancer of Split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery 138(6):1137–1142. doi:10.1016/j.surg.2005.05.027 discussion 1142

    Article  PubMed  Google Scholar 

  21. Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13(8):1799–1805

    CAS  PubMed  Google Scholar 

  22. Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev 6(12B):2620–2634. doi:10.1101/gad.6.12b.2620

    Article  CAS  PubMed  Google Scholar 

  23. Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120(9):2385–2396

    CAS  PubMed  Google Scholar 

  24. Tomita K, Ishibashi M, Nakahara K, Ang SL, Nakanishi S, Guillemot F, Kageyama R (1996) Mammalian hairy and enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16(4):723–734. doi:10.1016/S0896-6273(00)80093-8

    Article  CAS  PubMed  Google Scholar 

  25. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R (1999) The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 13(9):1203–1210. doi:10.1101/gad.13.9.1203

    Article  CAS  PubMed  Google Scholar 

  26. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120. doi:10.1016/0092-8674(94)90041-8

    Article  CAS  PubMed  Google Scholar 

  27. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28(3):216–217. doi:10.1038/90046

    Article  CAS  PubMed  Google Scholar 

  28. Drivdahl R, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Plymate SR (2004) Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 23(26):4584–4593. doi:10.1038/sj.onc.1207603

    Article  CAS  PubMed  Google Scholar 

  29. Panda DK, Miao D, Lefebvre V, Hendy GN, Goltzman D (2001) The transcription factor SOX9 regulates cell cycle and differentiation genes in chondrocytic CFK2 cells. J Biol Chem 276(44):41229–41236. doi:10.1074/jbc.M104231200

    Article  CAS  PubMed  Google Scholar 

  30. Afonja O, Raaka BM, Huang A, Das S, Zhao X, Helmer E, Juste D, Samuels HH (2002) RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition. Oncogene 21(51):7850–7860. doi:10.1038/sj.onc.1205985

    Article  CAS  PubMed  Google Scholar 

  31. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17(4):2336–2346

    CAS  PubMed  Google Scholar 

  32. Hwang CK, Wu X, Wang G, Kim CS, Loh HH (2003) Mouse mu opioid receptor distal promoter transcriptional regulation by SOX proteins. J Biol Chem 278(6):3742–3750. doi:10.1074/jbc.M208780200

    Article  CAS  PubMed  Google Scholar 

  33. Schreiber E, Matthias P, Muller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17(15):6419. doi:10.1093/nar/17.15.6419

    Article  CAS  PubMed  Google Scholar 

  34. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144(10):4562–4574. doi:10.1210/en.2003-0567

    Article  CAS  PubMed  Google Scholar 

  35. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298(5594):840–843

    Article  CAS  PubMed  Google Scholar 

  36. Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, Kageyama R (2007) Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci USA 104(27):11292–11297. doi:10.1073/pnas.0701837104

    Article  CAS  PubMed  Google Scholar 

  37. Bernard P, Tang P, Liu S, Dewing P, Harley VR, Vilain E (2003) Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Hum Mol Genet 12(14):1755–1765. doi:10.1093/hmg/ddg182

    Article  CAS  PubMed  Google Scholar 

  38. Bridgewater LC, Walker MD, Miller GC, Ellison TA, Holsinger LD, Potter JL, Jackson TL, Chen RK, Winkel VL, Zhang Z et al (2003) Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res 31(5):1541–1553. doi:10.1093/nar/gkg230

    Article  CAS  PubMed  Google Scholar 

  39. Karlsson C, Brantsing C, Svensson T, Brisby H, Asp J, Tallheden T, Lindahl A (2007) Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res 25(2):152–163. doi:10.1002/jor.20287

    Article  CAS  PubMed  Google Scholar 

  40. Oldershaw RA, Tew SR, Russell AM, Meade K, Hawkins R, McKay TR, Brennan KR, Hardingham TE (2008) Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells, but must be switched off to complete chondrogenesis. Stem Cells 26(3):666–674

    Article  CAS  PubMed  Google Scholar 

  41. Weston AD, Chandraratna RA, Torchia J, Underhill TM (2002) Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol 158(1):39–51. doi:10.1083/jcb.200112029

    Article  CAS  PubMed  Google Scholar 

  42. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M (2007) SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA 104(6):1865–1870. doi:10.1073/pnas.0609217104

    Article  CAS  PubMed  Google Scholar 

  43. Georgia S, Soliz R, Li M, Zhang P, Bhushan A (2006) p57 and Hes1 coordinate cell cycle exit with self-renewal of pancreatic progenitors. Dev Biol 298(1):22–31. doi:10.1016/j.ydbio.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  44. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24(1):36–44. doi:10.1038/71657

    Article  CAS  PubMed  Google Scholar 

  45. Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H, Suzuki K, Hiai H, Kageyama R, Okano H et al (2003) Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett 535(1–3):131–135. doi:10.1016/S0014-5793(02)03896-6

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY (2001) Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294(5549):2155–2158

    Article  CAS  PubMed  Google Scholar 

  47. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968. doi:10.1038/nature03589

    Article  CAS  PubMed  Google Scholar 

  48. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963. doi:10.1038/nature03659

    Article  PubMed  Google Scholar 

  49. Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H, de Crombrugghe B (2007) SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology 133(2):539–546. doi:10.1053/j.gastro.2007.05.020

    Article  CAS  PubMed  Google Scholar 

  50. Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande F et al (2007) Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 178(4):635–648. doi:10.1083/jcb.200704152

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki K, Fukui H, Kayahara T, Sawada M, Seno H, Hiai H, Kageyama R, Okano H, Chiba T (2005) Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine. Biochem Biophys Res Commun 328(1):348–352. doi:10.1016/j.bbrc.2004.12.174

    Article  CAS  PubMed  Google Scholar 

  52. Curry CL, Reed LL, Nickoloff BJ, Miele L, Foreman KE (2006) Notch-independent regulation of Hes-1 expression by c-Jun N-terminal kinase signaling in human endothelial cells. Lab invest; J tech methods pathol 86(8):842–852

    CAS  Google Scholar 

  53. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato N (2005) Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25(10):4262–4271. doi:10.1128/MCB.25.10.4262-4271.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Véronique Lefebvre and Gerd Scherer for kindly providing us SOX9 and truncated SOX9 plasmids. This work was supported by Magnus Bergwall’s foundation and by the Swedish Cancer Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Crofts, J.D., Newman, B.S. et al. SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Res Treat 120, 317–326 (2010). https://doi.org/10.1007/s10549-009-0381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0381-6

Keywords

Navigation