Skip to main content

Advertisement

Log in

TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

TIMP-1 (Tissue inhibitor of matrix metalloproteinase-1) is typically associated with inhibition of matrix metalloproteinases (MMP) induced invasion. However, TIMP-1 is overexpressed in many malignancies and is associated with poor prognosis in breast cancer. The mechanisms by which TIMP-1 promotes tumorigenesis are unclear. Reduced levels of TIMP-1 mediated by shRNA in MDA-MB-231 breast cancer cells had no effect on cellular physiology in vitro or tumor growth in SCID mice compared to vector control MDA-MB-231 cells. However, overexpression of TIMP-1 in MDA-MB-231 cells resulted in inhibition of cell invasion and enhanced phosphorylation of p38 MAPK and AKT in vitro. Additionally, treatment of parental MDA-MB-231 cells with purified TIMP-1 protein led to activation of p38 MAPK and MKK 3/6. cDNA array analysis demonstrated that high expression of TIMP-1 in MDA-MB-231 cells resulted in alterations in expression of approximately 200 genes, 1.5 fold or greater compared to vector control cells (P < 0.1). Real-time RT-PCR confirmed changes in expression of several genes associated with cancer progression including DAPK1, FGFR4 and MAPK13. In vivo, high TIMP-1 expression induced tumor growth in SCID mice compared to vector control cells and increased tumor vessel density. Affymetrix array analysis of vector control and TIMP-1 MDA-MB-231 xenograft tumors revealed that TIMP-1 altered expression of approximately 600 genes in vivo, including MMP1, MMP13, S100A14, S100P, Rab25 and ID4. These combined observations suggest that the effects of TIMP-1 differ significantly in a 2-D environment compared to the 3-D environment and that TIMP-1 stimulates tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guedez L, McMarlin AJ, Kingma DW, Bennett TA, Stetler-Stevenson M, Stetler-Stevenson WG (2001) Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt’s lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol 158:1207–1215

    PubMed  CAS  Google Scholar 

  2. Kong Y, Poon R, Nadesan P, Di Muccio T, Fodde R, Khokha R et al (2004) Matrix metalloproteinase activity modulates tumor size, cell motility, and cell invasiveness in murine aggressive fibromatosis. Cancer Res 64:5795–5803. doi:10.1158/0008-5472.CAN-03-3112

    Article  PubMed  CAS  Google Scholar 

  3. Rigg AS, Lemoine NR (2001) Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther 8:869–878. doi:10.1038/sj.cgt.7700387

    Article  PubMed  CAS  Google Scholar 

  4. Khokha R, Waterhouse P, Yagel S, Lala PK, Overall CM, Norton G et al (1989) Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 243:947–950. doi:10.1126/science.2465572

    Article  PubMed  CAS  Google Scholar 

  5. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi:10.1038/nrc745

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84:44–48. doi :10.1002/(SICI)1097-0215(19990219)84:1<44::AID-IJC9>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  7. Ree AH, Florenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad O (1997) High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3:1623–1628

    PubMed  CAS  Google Scholar 

  8. Nakopoulou L, Giannopoulou I, Stefanaki K, Panayotopoulou E, Tsirmpa I, Alexandrou P et al (2002) Enhanced mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in breast carcinomas is correlated with adverse prognosis. J Pathol 197:307–313. doi:10.1002/path.1129

    Article  PubMed  CAS  Google Scholar 

  9. Schrohl AS, Christensen IJ, Pedersen AN, Jensen V, Mouridsen H, Murphy G et al (2003) Tumor tissue concentrations of the proteinase inhibitors tissue inhibitor of metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor type 1 (PAI-1) are complementary in determining prognosis in primary breast cancer. Mol Cell Proteomics 2:164–172. doi:10.1074/mcp.M300019-MCP200

    Article  PubMed  CAS  Google Scholar 

  10. Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21:2245–2252. doi:10.1038/sj.onc.1205291

    Article  PubMed  CAS  Google Scholar 

  11. Wurtz SO, Schrohl AS, Sorensen NM, Lademann U, Christensen IJ, Mouridsen H et al (2005) Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer 12:215–227. doi:10.1677/erc.1.00719

    Article  PubMed  CAS  Google Scholar 

  12. Gasson JC, Golde DW, Kaufman SE, Westbrook CA, Hewick RM, Kaufman RJ et al (1985) Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature 315:768–771. doi:10.1038/315768a0

    Article  PubMed  CAS  Google Scholar 

  13. Bertaux B, Hornebeck W, Eisen AZ, Dubertret L (1991) Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol 97:679–685. doi:10.1111/1523-1747.ep12483956

    Article  PubMed  CAS  Google Scholar 

  14. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 298:29–32. doi:10.1016/0014-5793(92)80015-9

    Article  PubMed  CAS  Google Scholar 

  15. Porter JF, Shen S, Denhardt DT (2004) Tissue inhibitor of metalloproteinase-1 stimulates proliferation of human cancer cells by inhibiting a metalloproteinase. Br J Cancer 90:463–470. doi:10.1038/sj.bjc.6601533

    Article  PubMed  CAS  Google Scholar 

  16. Taube ME, Liu XW, Fridman R, Kim HR (2006) TIMP-1 regulation of cell cycle in human breast epithelial cells via stabilization of p27(KIP1) protein. Oncogene 25:3041–3048. doi:10.1038/sj.onc.1209336

    Article  PubMed  CAS  Google Scholar 

  17. Yoshiji H, Harris SR, Raso E, Gomez DE, Lindsay CK, Shibuya M et al (1998) Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 75:81–87. doi :10.1002/(SICI)1097-0215(19980105)75:1<81::AID-IJC13>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  18. Akahane T, Akahane M, Shah A, Connor CM, Thorgeirsson UP (2004) TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp Cell Res 301:158–167. doi:10.1016/j.yexcr.2004.08.002

    Article  PubMed  CAS  Google Scholar 

  19. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115:3427–3438

    PubMed  CAS  Google Scholar 

  20. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177:275–283. doi:10.1002/path.1711770310

    Article  PubMed  CAS  Google Scholar 

  21. Hansen S, Sorensen FB, Vach W, Grabau DA, Bak M, Rose C (2004) Microvessel density compared with the Chalkley count in a prognostic study of angiogenesis in breast cancer patients. Histopathology 44:428–436. doi:10.1111/j.1365-2559.2004.01848.x

    Article  PubMed  CAS  Google Scholar 

  22. Liu XW, Bernardo MM, Fridman R, Kim HR (2003) Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem 278:40364–40372. doi:10.1074/jbc.M302999200

    Article  PubMed  CAS  Google Scholar 

  23. Pramanik R, Qi X, Borowicz S, Choubey D, Schultz RM, Han J et al. (2003). p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. J Biol Chem 278:4831–4839. doi:10.1074/jbc.M207732200

    Google Scholar 

  24. Porter JF, Sharma S, Wilson DL, Kappil MA, Hart RP, Denhardt DT (2005) Tissue inhibitor of metalloproteinases-1 stimulates gene expression in MDA-MB-435 human breast cancer cells by means of its ability to inhibit metalloproteinases. Breast Cancer Res Treat 94:185–193. doi:10.1007/s10549-005-7728-4

    Article  PubMed  CAS  Google Scholar 

  25. Bialik S, Kimchi A (2004) DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol 14:283–294. doi:10.1016/j.semcancer.2004.04.008

    Article  PubMed  CAS  Google Scholar 

  26. Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhonen S et al (1993) Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer 54:378–382. doi:10.1002/ijc.2910540305

    Article  PubMed  CAS  Google Scholar 

  27. Johnston CL, Cox HC, Gomm JJ, Coombes RC (1995) bFGF and aFGF induce membrane ruffling in breast cancer cells but not in normal breast epithelial cells: FGFR-4 involvement. Biochem J 306(Pt 2):609–616

    PubMed  CAS  Google Scholar 

  28. Koziczak M, Hynes NE (2004) Cooperation between fibroblast growth factor receptor-4 and ErbB2 in regulation of cyclin D1 translation. J Biol Chem 279:50004–50011. doi:10.1074/jbc.M404252200

    Article  PubMed  CAS  Google Scholar 

  29. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34. doi:10.1007/s10555-006-7886-9

    Article  PubMed  CAS  Google Scholar 

  30. Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26. doi:10.1002/jcp.20948

    Article  PubMed  CAS  Google Scholar 

  31. Feltes CM, Kudo A, Blaschuk O, Byers SW (2002) An alternatively spliced cadherin−11 enhances human breast cancer cell invasion. Cancer Res 62:6688–6697

    PubMed  CAS  Google Scholar 

  32. Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A et al (2003) Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). Proc Natl Acad Sci USA 100:5431–5436. doi:10.1073/pnas.0530308100

    Article  PubMed  CAS  Google Scholar 

  33. Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R (2007) Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci 80:1873–1881. doi:10.1016/j.lfs.2007.02.026

    Article  PubMed  CAS  Google Scholar 

  34. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER et al (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62:5874–5880

    PubMed  CAS  Google Scholar 

  35. Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R (2007) The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 106:333–342. doi:10.1007/s10549-007-9504-0

    Article  PubMed  Google Scholar 

  36. Zhao C, Yasui K, Lee CJ, Kurioka H, Hosokawa Y, Oka T et al (2003) Elevated expression levels of NCOA3, TOP1, and TFAP2C in breast tumors as predictors of poor prognosis. Cancer 98:18–23. doi:10.1002/cncr.11482

    Article  PubMed  CAS  Google Scholar 

  37. Woodfield GW, Horan AD, Chen Y, Weigel RJ (2007) TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling. Cancer Res 67:8439–8443. doi:10.1158/0008-5472.CAN-07-2293

    Article  PubMed  CAS  Google Scholar 

  38. Martin MD, Matrisian LM (2007) The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 26:717–724. doi:10.1007/s10555-007-9089-4

    Article  PubMed  CAS  Google Scholar 

  39. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601. doi:10.1016/S1535-6108(03)00133-8

    Article  PubMed  CAS  Google Scholar 

  40. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J (1999) The generation of endostatin is mediated by elastase. Cancer Res 59:6052–6056

    PubMed  CAS  Google Scholar 

  41. Dasse E, Bridoux L, Baranek T, Lambert E, Salesse S, Sowa ML et al (2007) Tissue inhibitor of metalloproteinase-1 promotes hematopoietic differentiation via caspase−3 upstream the MEKK1/MEK6/p38alpha pathway. Leukemia 21:595–603

    PubMed  CAS  Google Scholar 

  42. Wang T, Yamashita K, Iwata K, Hayakawa T (2002) Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem Biophys Res Commun 296:201–205. doi:10.1016/S0006-291X(02)00741-6

    Article  PubMed  CAS  Google Scholar 

  43. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase−1 interacting cell surface protein. Embo J 25:3934–3942

    Article  PubMed  CAS  Google Scholar 

  44. Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S et al (2007) Tissue inhibitor of metalloproteinases−1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67:8615–8623. doi:10.1158/0008-5472.CAN-07-0232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded through the Department of Defense, Grant # BC020675 (JAC) and the National Institute of Health, NRSA, Fellowship #CA112714 (RLHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Cardelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Affymetrix cDNA array analysis of MDA-MB-231 pcDNA pool #1 and TIMP-1 pool #1 breast cancer cells in monolayer culture (XLS 51 kb)

Supplementary Table 2

Affymetrix cDNA array analysis of MDA-MB-231 pcDNA pool #1 and TIMP-1 pool #1 MDA-MB-231 breast cancer xenografts (XLS 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigelow, R.L.H., Williams, B.J., Carroll, J.L. et al. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat 117, 31–44 (2009). https://doi.org/10.1007/s10549-008-0170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0170-7

Keywords

Navigation