Skip to main content

Advertisement

Log in

Terpenoids and breast cancer chemoprevention

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cancer chemoprevention is defined as the use of natural or synthetic agents that reverse, suppress or arrest carcinogenic and/or malignant phenotype progression towards invasive cancer. Phytochemicals obtained from vegetables, fruits, spices, herbs and medicinal plants, such as terpenoids, carotenoids, flavanoids, phenolic compounds, and other groups of compounds have shown promise in suppressing experimental carcinogenesis in various organs. Recent studies have indicated that mechanisms underlying chemopreventive action may include combinations of anti-oxidant, anti-inflammatory, immune-enhancing, and anti-hormone effects. Further, modification of drug-metabolizing enzymes, and influences on cell cycling and differentiation, induction of apoptosis, and suppression of proliferation and angiogenesis that play a role in the initiation and secondary modification of neoplastic development, have also been under investigation as possible mechanisms. This review will highlight the biological effects of terpenoids as chemopreventive agents on breast epithelial carcinogenesis, and the utility of intermediate biomarkers as indicators of premalignancy. Selected breast chemoprevention trials are discussed with a focus on strategies for trial design, and clinical outcomes. Future directions in the field of chemoprevention are proposed based on recently acquired mechanistic insights into breast carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. American Cancer Society (2008) Cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Wong JS, Harris JR (2001) Importance of local tumor control in breast cancer. Lancet Oncol 2:11–17. doi:10.1016/S1470-2045(00)00190-X

    Article  PubMed  CAS  Google Scholar 

  3. Kakizoe T (2003) Chemoprevention of cancer: focusing on clinical trials. Jpn J Clin Oncol 3:421–442. doi:10.1093/jjco/hyg090

    Article  Google Scholar 

  4. National Cancer Institute (2007) Highlights of NCI’s prevention and control programs. National Cancer Institute, Bethesda

    Google Scholar 

  5. Shukla S, Gupta S (2005) Dietary agents in the chemoprevention of prostate cancer. Nutr Cancer 53:18–32. doi:10.1207/s15327914nc5301_3

    Article  PubMed  CAS  Google Scholar 

  6. Gupta S (2007) Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol 224:369–376. doi:10.1016/j.taap. 2006.11.008

    Article  PubMed  CAS  Google Scholar 

  7. Lippman SM, Benner SE, Hong WK (1994) Cancer chemoprevention. J Clin Oncol 12:851–873

    PubMed  CAS  Google Scholar 

  8. Wattenberg LW (1996) Chemoprevention of cancer. Prev Med 25:44–45. doi:10.1006/pmed.1996.0015

    Article  PubMed  CAS  Google Scholar 

  9. Wattenberg LW (1993) Prevention, therapy, and basic science and the resolution of the cancer problem. Cancer Res 53:5890–5896

    PubMed  CAS  Google Scholar 

  10. Wagner KH, Elmadfa I (2003) Biological relevance of terpenoids. Ann Nutr Metab 47:95–106. doi:10.1159/000070030

    Article  PubMed  CAS  Google Scholar 

  11. Mirvish SS (1981) Inhibition of the formation of carcinogenic N-nitroso compounds by ascorbic acid and other compounds. In: Burchenal JH, Oettgen HF (eds) Cancer achievements, challenges and prospects of the 1980s. Grune and Stratton, New York

    Google Scholar 

  12. Wattenberg LW (1975) Inhibition of dimethyl hydrazine-induced neoplasia of the large intestine by disulfiram. J Natl Cancer Inst 54:1005–1006

    PubMed  CAS  Google Scholar 

  13. Miller EC (1978) Some current perceptive on chemical carcinogenesis in human and experimental animals. Cancer Res 38:1479–1496

    PubMed  CAS  Google Scholar 

  14. Newmark H, Mergens W (1981) α-Tocopherol (vitamin E) and its relationship to tumor induction. In: Zedeck MS, Lipken M (eds) Inhibition of tumor induction and development. Plenum Publishing Corp, New York

    Google Scholar 

  15. Wattenberg LW (1983) Inhibition of neoplasia by minor dietary constituents. Cancer Res 43:2448–2453

    CAS  Google Scholar 

  16. Sporn MB (1983) Retinoids and suppression of carcinogenesis. Hosp Pract 18:83–98

    CAS  Google Scholar 

  17. Rohdich F, Bacher A, Eisenreich W (2005) Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 33:785–791. doi:10.1042/BST0330785

    Article  PubMed  CAS  Google Scholar 

  18. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990. doi:10.1007/s00253-006-0593-1

    Article  PubMed  CAS  Google Scholar 

  19. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79. doi:10.1016/j.jep. 2005.05.011

    Article  PubMed  CAS  Google Scholar 

  20. Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908. doi:10.1016/j.bmc.2005.05.066

    Article  PubMed  CAS  Google Scholar 

  21. Cragg GM, Newman DJ (2003) Plants as a source of anti-cancer and anti-HIV agents. Ann Appl Biol 143:127–133. doi:10.1111/j.1744-7348.2003.tb00278.x

    Article  CAS  Google Scholar 

  22. Loza-Tavera H (1999) Monoterpenes in essential oils: biosynthesis and properties. Adv Exp Med Biol 464:49–62

    PubMed  CAS  Google Scholar 

  23. Little DB, Croteau R (1999) Biochemistry of essential oil plants: a thirty year overview. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry: thirty years of progress. Kluwer Academic, New York

    Google Scholar 

  24. Kris-Etherton PM, Kecker KD, Bonanoma A (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88. doi:10.1016/S0002-9343(01)00995-0

    Article  Google Scholar 

  25. Crowell PL, Gould MN (1994) Chemoprevention and therapy of cancer by d-limonene. CRC Crit Rev Oncol 5:1–22

    CAS  Google Scholar 

  26. Bardon S, Picard K, Martel P (1998) Monoterpenes inhibit cell growth, cell cycle progression, and cyclin D1 gene expression in human breast cancer cell lines. Nutr Cancer 32:1–7

    PubMed  CAS  Google Scholar 

  27. Elegbede JA, Elson CE, Qureshi A, Tanner MA, Gould MN (1984) Inhibition of DMBA-induced mammary cancer by the monoterpene d-limonene. Carcinogenesis 5:661–664. doi:10.1093/carcin/5.5.661

    Article  PubMed  CAS  Google Scholar 

  28. Mo H, Elson CE (2004) Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med 229:567–585

    CAS  Google Scholar 

  29. Cox AD, Der CJ (1997) Farnesyltransferase inhibitors and cancer treatment: targeting simply ras? Biochim Biophys Acta 1333:51–71

    Google Scholar 

  30. Jirtle RL, Haag JD, Ariazi EA, Gould MN (1993) Increased mannose 6-phosphate/insulin-like growth factor II receptor and transforming growth factor β1 levels during monoterpene-induced regression of mammary tumors. Cancer Res 53:3849–3852

    PubMed  CAS  Google Scholar 

  31. Rasmussen AA, Cullen KJ (1998) Paracrine/autocrine regulation of breast cancer by the insulin-like growth factors. Breast Cancer Res Treat 47:219–233. doi:10.1023/A:1005903000777

    Article  PubMed  CAS  Google Scholar 

  32. Haag JD, Gould MN (1994) Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chem Pharm 34:477–483. doi:10.1007/BF00685658

    Article  CAS  Google Scholar 

  33. Dennis PA, Rifkin DB (1991) Cellular activation of latent transforming growth factor β requires binding to the cation-independent mannose-6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 88:580–584. doi:10.1073/pnas.88.2.580

    Article  PubMed  CAS  Google Scholar 

  34. Satomi Y, Miyamoto S, Gould MN (1999) Induction of AP-1 activity by perillyl alcohol in breast cancer cells. Carcinogenesis 20:1957–1966. doi:10.1093/carcin/20.10.1957

    Article  PubMed  CAS  Google Scholar 

  35. Hohl RJ, Lewis K (1995) Differential effects of monoterpenes and lovastatin on RAS processing. J Biol Chem 270:17508–17512. doi:10.1074/jbc.270.29.17508

    Article  PubMed  CAS  Google Scholar 

  36. Vigushin DM, Poon GK, Boddy A et al (1998) Phase I and pharmacokinetic study of d-limonene in patients with advanced cancer. Cancer research campaign phase I/II clinical trials committee. Cancer Chemother Pharmacol 42:111–117. doi:10.1007/s002800050793

    Article  PubMed  CAS  Google Scholar 

  37. Ripple GH, Gould MN, Stewart JA et al (1998) Phase I clinical trial of perillyl alcohol administered daily. Clin Cancer Res 4:1159–1164

    PubMed  CAS  Google Scholar 

  38. Liu G, Oettel K, Bailey H (2003) Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest New Drugs 21:367–372. doi:10.1023/A:1025437115182

    Article  PubMed  CAS  Google Scholar 

  39. Crowell PL, Kennan WS, Vedejs E et al (1990) Chemoprevention of mammary carcinogenesis by hydroxylated metabolites of limonene. In: 81st annual meeting of the American association for cancer research. Proc Am Assoc Cancer Res, 23–26 May, Washington, DC, USA

  40. Ariazi EA, Gould MN (1996) Identifying differential gene expression in monoterpene-treated mammary carcinomas using subtractive display. J Biol Chem 271:29286–29294. doi:10.1074/jbc.271.46.29286

    Article  PubMed  CAS  Google Scholar 

  41. Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775–778

    Google Scholar 

  42. Journe F, Laurent G, Chaboteaux C et al (2008) Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farnesoid-X-receptor-mediated estrogen receptor activation. Breast Cancer Res Treat 107:49–61. doi:10.1007/s10549-007-9535-6

    Article  PubMed  CAS  Google Scholar 

  43. Zhang S, Ong CN, Shen HM (2004) Clinical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. doi:10.1016/j.canlet.2003.11.028

    Article  PubMed  CAS  Google Scholar 

  44. Wiedhopf RM, Young M, Bianchi E et al (1973) Tumor inhibitory agent from Magnolia grandiflora (Magnoliaceae) I: parthenolide. J Pharm Sci 62:345–350. doi:10.1002/jps.2600620244

    Article  PubMed  CAS  Google Scholar 

  45. Lippman SM, Kessler JF, Meyskens FL (1987) Retinoids as preventive and therapeutic anticancer agents (part I). Cancer Treat Rep 71:391–405

    PubMed  CAS  Google Scholar 

  46. Tallman MS, Wiernik PH (1992) Retinoids in cancer treatment. J Clin Pharmacol 32:868–888

    PubMed  CAS  Google Scholar 

  47. Lotan R (1980) Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta 605:33–91

    PubMed  CAS  Google Scholar 

  48. Sporn MB, Roberts AB (1983) The role of retinoids in differentiation and carcinogenesis. Cancer Res 43:3034–3040

    PubMed  CAS  Google Scholar 

  49. Cai D, Webber MM, DeLuca LM (1991) Retinoids enhance lectin binding to gp130, a glycoprotein of NIH-3T3 cells: correlation with cell growth and adhesion. Exp Cell Res 192:366–372. doi:10.1016/0014-4827(91)90053-W

    Article  PubMed  CAS  Google Scholar 

  50. Kirven MJ, Wolf G (1991) Synthesis and glycosylation of fibronectin in hepatocytes from vitamin A-deficient rats. Mol Cell Biochem 101:101–114. doi:10.1007/BF00229528

    Article  PubMed  CAS  Google Scholar 

  51. Grubbs CJ, Moon RC, Sporn MB (1977) Inhibition of mammary cancer by retinyl methyl ether. Cancer Res 37:599–602

    CAS  Google Scholar 

  52. Thompson HJ, Becci PJ, Moon RC (1980) Inhibition of a methyl-1-nitrosurea-induced mammary carcinogenesis in the rat by the retinoid axerophthene. Arzneimittelforschung 30:1127–1129

    PubMed  CAS  Google Scholar 

  53. Someone AM, Tari AM (2004) How retinoids regulate breast cancer cell proliferation and apoptosis? Cell Mol Life Sci 61:1475–1484

    Google Scholar 

  54. Fanjul A, Dawson MI, Hobbs PD et al (1994) A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature 372:107–111. doi:10.1038/372107a0

    Article  PubMed  CAS  Google Scholar 

  55. Darro F, Cohen P, Vianna A et al (1998) Growth inhibition of human in vitro and mouse in vitro and in vivo mammary tumor models by retinoids in comparison with tamoxifen and the RU-486 anti-progestagen. Breast Cancer Res Treat 51:39–55. doi:10.1023/A:1006098124087

    Article  PubMed  CAS  Google Scholar 

  56. Brtko J (2007) Role of retinoids and their cognate nuclear receptors in breast cancer chemoprevention. Cent Eur J Public Health 15:3–6

    PubMed  CAS  Google Scholar 

  57. Abou-Issa H, Curley RW Jr, Panigot MJ, Wilcox KA, Webb TE (1993) In vivo use of N-(4-hydroxyphenyl retinamide)-O-glucuronidee as a breast cancer chemopreventive agent. Anticancer Res 13:1431–1436

    PubMed  CAS  Google Scholar 

  58. Cohen LA, Epstein M, Saa-Pabon V (1994) Interactins between 4-HPR and diet in NMU-induced mammary tumorigenesis. Nutr Cancer 21:271–283

    PubMed  CAS  Google Scholar 

  59. Thomson HJ, Meeker LD, Becci PJ (1981) Effect of combined selenium and retinyl acetate treatment on mammary carcinogenesis. Cancer Res 41:1413–1416

    Google Scholar 

  60. Walaszek Z, Hanausek-Walaszek M (1987) Dietary glucarate inhibits rat mammary tumorigenesis induced by N-methyl-N-nitrosourea. Proc Am Assoc Cancer Res 28:153–158

    Google Scholar 

  61. Bhatnagar RH, Abou-Issa RW, Curley A (1991) Growth suppression of human breast carcinoma cells in culture by N-(4-hydroxyphenyl) retinamide, its glucuronide and through synergism with glucarate. Biochem Pharmacol 41:1471–1477. doi:10.1016/0006-2952(91)90563-K

    Article  PubMed  CAS  Google Scholar 

  62. Graham S, Marshall J, Mettlin C (1982) Diet in the epidemiology of breast cancer. Am J Epidemiol 116:68–75

    PubMed  CAS  Google Scholar 

  63. Torrisi RS, Parodi S, Fontana V (1994) Factors affecting plasma retinol decline during long-term administration of the synthetic retinoid fenretinide in breast cancer patients. Cancer Epidemiol Biomarkers Prev 3:507–510

    PubMed  CAS  Google Scholar 

  64. Farias EF, Ong DE, Ghyselinck NB et al (2004) Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation and tumorigenesis. J Natl Cancer Inst 97:21–29

    Google Scholar 

  65. Katsouyanni KW, Willett D, Trichopoulos D (1988) Risk of breast cancer among Greek women in relation to nutrient intake. Cancer 61:181–185. doi :10.1002/1097-0142(19880101)61:1<181::AID-CNCR2820610130>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  66. Richardson S, Gerber M, Cenee S (1991) The role of fat, animal protein and some vitamin consumption in breast cancer: a case–control study in Southern France. Int J Cancer 48:1–9

    PubMed  CAS  Google Scholar 

  67. Toniolo P, Riboli E, Protta F (1989) Calorie-providing nutrients and risk of breast cancer. J Natl Cancer Inst 81:278–286. doi:10.1093/jnci/81.4.278

    Article  PubMed  CAS  Google Scholar 

  68. Miller RC (1981) Modification of sister chromatic exchanges and radiation-induced transformation in rodent cells by the tumor promoter 12-O-tetradecanoylphorbhol-13-acetate and two retinoids. Cancer Res 41:655–660

    PubMed  CAS  Google Scholar 

  69. Sporn MB, Roberts AB, Roche NS (1986) Mechanism of action by retinoids. J Am Acad Dermatol 15:756–764

    Article  PubMed  CAS  Google Scholar 

  70. Sheikh MS, Shao ZM, Chen JC (1993) Retinoid modulation of c-myc and max gene expression in human breast carcinoma. Anticancer Res 13:1387–1392

    PubMed  CAS  Google Scholar 

  71. Charan RD, McKee TC, Boyd MR (2002) Thorectandrrols C, D, and E: new sesterterpenes from the marine sponge Thorectandra sp. J Nat Prod 65:492–495. doi:10.1021/np010439k

    Article  PubMed  CAS  Google Scholar 

  72. Beveridge TH, Li TS, Drover JC (2002) Phytosterol content in American ginseng seed oil. J Agric Food Chem 50:744–750. doi:10.1021/jf010701v

    Article  PubMed  CAS  Google Scholar 

  73. Kakuda R, Iijima T, Yaolta Y (2002) Triterpenoids from Gentiana scabra. Phytochemistry 59:791–794. doi:10.1016/S0031-9422(02)00021-3

    Article  PubMed  CAS  Google Scholar 

  74. Manez S, Recio MC, Giner RM et al (1997) Effect of selected triterpenoids on chronic dermal inflammation. Eur J Pharmacol 334:103–105. doi:10.1016/S0014-2999(97)01187-4

    Article  PubMed  CAS  Google Scholar 

  75. Moghadasian MH (2000) Pharmacological properties of plant sterols: in vivo and in vitro observations. Life Sci 67:605–615. doi:10.1016/S0024-3205(00)00665-2

    Article  PubMed  CAS  Google Scholar 

  76. Kim KB, Lotan R, Yue P et al (2002) Identification of a novel synthetic triterpenoid, methyl-2-cyano-3, 12-dioxoole-ane-1, 9-dien-28-oate, that potently induces caspase-mediated apoptosis in human lung cancer cells. Mol Cancer Ther 1:177–184

    PubMed  CAS  Google Scholar 

  77. Coldren CD, Hashim P, Ali J et al (2003) Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med 69:725–732. doi:10.1055/s-2003-42791

    Article  PubMed  CAS  Google Scholar 

  78. Jew SS, Yoo CH, Lim DY et al (2000) Structure–activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg Med Chem Lett 10:119–121. doi:10.1016/S0960-894X(99)00658-7

    Article  PubMed  CAS  Google Scholar 

  79. Lee MK, Kim SR, Sung SH et al (2000) Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced cytotoxicity. Res Commun Mol Pathol Pharmacol 108:75–86

    PubMed  CAS  Google Scholar 

  80. Lee YS, Jin DQ, Kwon EJ et al (2002) Asiatic acid, a triterpene, induces apoptosis through intracellular Ca2+ release and enhanced expression of p53 in HepG2 human hepatoma cells. Cancer Lett 186:83–91. doi:10.1016/S0304-3835(02)00260-4

    Article  PubMed  CAS  Google Scholar 

  81. Hsu YL, Kuo PL, Lin LT et al (2005) Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J Pharmacol Exp Ther 313:333–344. doi:10.1124/jpet.104.078808

    Article  PubMed  CAS  Google Scholar 

  82. Nagase M, Oto J, Sugiyama S et al (2003) Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci Biotechnol Biochem 67:1883–1887. doi:10.1271/bbb.67.1883

    Article  PubMed  CAS  Google Scholar 

  83. Yang H, Chen D, Cui QC et al (2006) Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66:4758–4765. doi:10.1158/0008-5472.CAN-05-4529

    Article  PubMed  CAS  Google Scholar 

  84. Huang FC, Chan WK, Moriarty KJ et al (1998) Novel cytokine release inhibitors Part I: triterpenes. Bioorg Med Chem Lett 8:1883–1886. doi:10.1016/S0960-894X(98)00331-X

    Article  PubMed  CAS  Google Scholar 

  85. Jin HZ, Hwang BY, Kim HS et al (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65:89–91. doi:10.1021/np010428r

    Article  PubMed  CAS  Google Scholar 

  86. Chang FR, Hayashi K, Chen IH et al (2003) Antitumor agents. 228. Five new agarofurans, reissantins A-E, and cytotoxic principles from Reissantia buchananii. J Nat Prod 66:1416–1420. doi:10.1021/np030241v

    Article  PubMed  CAS  Google Scholar 

  87. Gonzalez GJ, Monache DG, Monache DF et al (1982) Chuchuhuasha-a drug used in folk medicine in the Amazonian and Andean areas. A chemical study of Maytenus laevis. J Ethnopharmacol 5:73–77. doi:10.1016/0378-8741(82)90022-8

    Article  PubMed  CAS  Google Scholar 

  88. Shirota O, Morita H, Takeya K et al (1994) Cytotoxic aromatic triterpenes from Maytenus ilicifolia and Maytenus chuchuhuasca. J Nat Prod 57:1675–1681. doi:10.1021/np50114a009

    Article  PubMed  CAS  Google Scholar 

  89. Dirsch V, Wiemann W, Wagner H (1992) Antiinflammatory activity of triterpene quinine-methides and proanthocyanidines from the stem bark of Heisteria pallida. Engl Pharm Pharmacol Lett 2:184–186

    CAS  Google Scholar 

  90. Hui B, Wu YJ, Wang H et al (2003) Effect of pristimerin on experimental inflammation in mice and rats. Chin Pharm Bull 19:656–659

    CAS  Google Scholar 

  91. Dirsch VM, Kiemer AK, Wagner H et al (1997) The triterpenoid quinonemethide pristimerin inhibits induction of inducible nitric oxide synthase in murine macrophages. Eur J Pharmacol 336:211–217. doi:10.1016/S0014-2999(97)01245-4

    Article  PubMed  CAS  Google Scholar 

  92. Shao ZM, Dawson MI, Li XS et al (1995) P53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene 11:493–504

    PubMed  CAS  Google Scholar 

  93. Yang H, Shi G, Dou QP (2007) The tumor proteosome is a primary target for the natural anticancer compound Withaferin A isolated from ‘Indian Winter Cherry’. Mol Pharmacol 71:426–437. doi:10.1124/mol.106.030015

    Article  PubMed  CAS  Google Scholar 

  94. Mohan R, Hammers HJ, Bargagna-Mohan P et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122. doi:10.1007/s10456-004-1026-3

    Article  PubMed  CAS  Google Scholar 

  95. Jayaprakasam B, Zhang Y, Seeram NP et al (2003) Growth inhibition of human tumor cell lines by Withanolides from Withania somnifera leaves. Life Sci 74:125–132. doi:10.1016/j.lfs.2003.07.007

    Article  PubMed  CAS  Google Scholar 

  96. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369. doi:10.1038/nrc2129

    Article  PubMed  CAS  Google Scholar 

  97. Suh N, Wang Y, Honda T et al (1999) A novel synthetic oleanane triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res 59:336–341

    PubMed  CAS  Google Scholar 

  98. Ahmad R, Raina D, Meyer C (2006) Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on cys-179. J Biol Chem 281:35764–35769. doi:10.1074/jbc.M607160200

    Article  PubMed  CAS  Google Scholar 

  99. Ling X, Konopleva M, Zeng Z (2007) The novel triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid inhibits metastatic murine breast tumor growth through inactivation of STAT3 signaling. Cancer Res 67:4210–4218. doi:10.1158/0008-5472.CAN-06-3629

    Article  PubMed  CAS  Google Scholar 

  100. Hyer ML, Croxton R, Krajewska M et al (2005) Synthetic triterpenoids cooperate with tumor necrosis factor-related apoptosis-inducing ligand to induce apoptosis of breast cancer cells. Cancer Res 65:4799–4808. doi:10.1158/0008-5472.CAN-04-3319

    Article  PubMed  CAS  Google Scholar 

  101. Furtado RA, Rodrigues EP, Araujo FR et al (2008) Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1,2-dimethylhydrazine in rat colon. Toxicol Pathol (May):8. Epub ahead of print

  102. Subbaramiah K, Michaluart P, Sporn MB et al (2000) Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res 60:2399–2404

    Google Scholar 

  103. Singletary K, MacDonald C, Wallig M (1996) Inhibition by rosemary and carnosol of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett 104:43–48. doi:10.1016/0304-3835(96)04227-9

    Article  PubMed  CAS  Google Scholar 

  104. Liby K, Honda T, Williams CR et al (2007) Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol Cancer Ther 6:2113–2119. doi:10.1158/1535-7163.MCT-07-0180

    Article  PubMed  CAS  Google Scholar 

  105. Yoon H, Liu RH (2007) Effect of selected phytochemicals and apple extracts on NF-κB activation in human breast cancer MCF-7 cells. J Agric Food Chem 55:3167–3174. doi:10.1021/jf0632379

    Article  PubMed  CAS  Google Scholar 

  106. Liu RH, Liu J, Chen B (2005) Apples prevent mammary tumors in rats. J Agric Food Chem 53:2341–2343. doi:10.1021/jf058010c

    Article  PubMed  CAS  Google Scholar 

  107. He X, Liu RH (2007) Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J Agric Food Chem 55:4366–4370. doi:10.1021/jf063563o

    Article  PubMed  CAS  Google Scholar 

  108. Dong M, He X, Liu RH (2007) Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 55:4366–4370. doi:10.1021/jf070706d

    Article  CAS  Google Scholar 

  109. Dai J, Fishback JA, Zhou YD, Nagle DG (2006) Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. J Nat Prod 69:1715–1720. doi:10.1021/np060278q

    Article  PubMed  CAS  Google Scholar 

  110. Ee GC, Lim CK, Rahmat A, Lee HL (2005) Cytotoxic activities of chemical constituents from Mesua daphnifolia. Trop Biomed 22:99–102

    PubMed  CAS  Google Scholar 

  111. Rabi T (1996) Antitumor activity of amooranin from Amoora rohituka stem bark. Curr Sci 70:80–81

    CAS  Google Scholar 

  112. Rabi T, Karunagaran D, Krishnan Nair M, Bhattathiri VN (2002) Cytotoxic activity of amooranin and its derivatives. Phytother Res 16:S84–S86. doi:10.1002/ptr.803

    Article  PubMed  CAS  Google Scholar 

  113. Rabi T, Ramachandran C, Fonseca HB, Alomo A, Melnick SJ, Escalon E (2003) Novel drug amooranin induces apoptosis through caspase activity in human breast carcinoma cell lines. Breast Cancer Res Treat 80:321–330. doi:10.1023/A:1024911925623

    Article  PubMed  CAS  Google Scholar 

  114. Rabi T, Wang L, Banerjee S (2007) Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat 101:27–36. doi:10.1007/s10549-006-9275-z

    Article  PubMed  CAS  Google Scholar 

  115. Rabi T, Banerjee S (2007) Novel synthetic triterpenoid AMR-Me induces apoptosis through JNK and p38 MAPK pathways in MCF-7 human breast cancer cells. Mol Carcinog 47:415–423. doi:10.1002/mc.20399

    Article  CAS  Google Scholar 

  116. Keijer J, Bunschoten A, Palou A et al (2005) Beta-carotene and the application of transcriptomics in risk-benefit evaluation of natural dietary components. Biochim Biophys Acta 1740:139–146

    PubMed  CAS  Google Scholar 

  117. Krinsky I, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516. doi:10.1016/j.mam.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  118. Peters U, Leitzmann ME, Chatterjee N (1997) Serum lycopene, other carotenoids and prostate cancer risk: a nested case–control study in the prostate, lung, colorectal and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16:109–126

    Google Scholar 

  119. Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126

    PubMed  CAS  Google Scholar 

  120. Wald NJ, Boreham J, Hayward JL (1984) Plasma retinol, β-carotene and vitamin E levels in relation to the future risk of breast cancer. Br J Cancer 49:321–324

    PubMed  CAS  Google Scholar 

  121. Knekt P, Aromaa A, Maatela J (1990) Serum vitamin A and subsequent risk of cancer: cancer incidence follow-up of the Finnish mobile clinic health examination survey. Am J Epidemiol 132:857–870

    PubMed  CAS  Google Scholar 

  122. Toniolo P, Van Kappel AL, Akhmedkhanov A (2001) Serum carotenoids and breast cancer. Am J Epidemiol 153:1142–1147. doi:10.1093/aje/153.12.1142

    Article  PubMed  CAS  Google Scholar 

  123. Dorgan JF, Sowell A, Swanson CA (1998) Relationships of serum carotenoids, retinol, α-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia. Missouri (United States). Cancer Causes Control 9:89–97. doi:10.1023/A:1008857521992

    Article  PubMed  CAS  Google Scholar 

  124. Panayiotidis M, Collins AR (1998) Ex vivo assessment of lymphocyte antioxidant status using the comet assay. Free Radic Res 27:533–537. doi:10.3109/10715769709065793

    Article  Google Scholar 

  125. Shklar G (1998) Mechanism of cancer inhibition by anti-oxidant nutrients. Oral Oncol 34:24–29. doi:10.1016/S1368-8375(97)00060-2

    Article  PubMed  CAS  Google Scholar 

  126. Cui Y, Lu Z, Bai L (2007) Beta-carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor gamma expression and reactive oxygen species production in MCF-7 cancer cells. Eur J Cancer 43:2590–2601. doi:10.1016/j.ejca.2007.08.015

    Article  PubMed  CAS  Google Scholar 

  127. Arab L, Steck S (2000) Lycopene and cardiovascular disease. Am J Clin Nutr 71:1691–1695

    Google Scholar 

  128. Nagasawa H, Mitamura T, Sakamoto S et al (1995) Effects of lycopene on spontaneous mammary tumour development in SHN virgin mice. Anticancer Res 15:1173–1178

    PubMed  CAS  Google Scholar 

  129. Sharoni Y, Giron E, Rise M (1997) Effects of lycopene-enriched tomato oleoresin on 7, 12-dimethylbenz[a]anthracene-induced rat mammary tumors. Cancer Detect Prev 21:118–123

    PubMed  CAS  Google Scholar 

  130. Levy J, Bosin E, Feldman B et al (1995) Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 24:257–266

    PubMed  CAS  Google Scholar 

  131. Park JS, Chew BP, Wong TS (1998) Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice. J Nutr 128:1650–1656

    PubMed  CAS  Google Scholar 

  132. Sumantran VN, Zhang R, Lee DS et al (2000) Differential regulation of apoptosis in normal versus transformed mammary epithelium by lutein and retinoic acid. Cancer Epidemiol Biomarkers Prev 9:257–263

    PubMed  CAS  Google Scholar 

  133. Chew BP, Brown CM, Park JS (2003) Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. Anticancer Res 23:3333–3339

    PubMed  CAS  Google Scholar 

  134. Zhang LX, Cooney RV, Bertram JS (1991) Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12:2109–2114. doi:10.1093/carcin/12.11.2109

    Article  PubMed  CAS  Google Scholar 

  135. Haegele AD, Gillette C, O’Neill C et al (2000) Plasma xanthophyll carotenoids correlate inversely with indices of oxidative DNA damage and lipid peroxidation. Cancer Epidemiol Biomarkers Prev 9:421–425

    PubMed  CAS  Google Scholar 

  136. Khachik F, Beecher GR, Smith JC Jr (1995) Lutein, lycopene, and their oxidative metabolites in chemoprevention of cancer. J Cell Biochem 22:236–246. doi:10.1002/jcb.240590830

    Article  CAS  Google Scholar 

  137. Astley SB, Elliott RM, Archer DB et al (2002) Increased cellular carotenoid levels reduce the persistence of DNA single-strand breaks after oxidative challenge. Nutr Cancer 43:202–213. doi:10.1207/S15327914NC432_11

    Article  PubMed  CAS  Google Scholar 

  138. Park JS, Chew BP, Wong TS (1998) Dietary lutein absorption from marigold extract is rapid in BALB/c mice. J Nutr 128:1802–1806

    PubMed  CAS  Google Scholar 

  139. Jyonouchi H, Zhang L, Gross MD (1994) Immunomodulating actions of carotenoids: enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr Cancer 21:47–58

    PubMed  CAS  Google Scholar 

  140. Park JS, Chew BP, Wong TS (1999) Dietary lutein but not astaxanthin or beta-carotene increases pim-1 gene expression in murine lymphocytes. Nutr Cancer 33:206–212. doi:10.1207/S15327914NC330214

    Article  PubMed  CAS  Google Scholar 

  141. Kline K, Lawson KA, Yu W (2003) Vitamin E and breast cancer prevention: current status and future potential. J Mammary Gland Biol Neoplasia 8:91–102. doi:10.1023/A:1025787422466

    Article  PubMed  Google Scholar 

  142. Kline K, Yu W, Sanders BG (2001) Vitamin E: mechanisms of action as tumor cell growth inhibitors. J Nutr 131:161–163

    Google Scholar 

  143. Yu W, Liao QY, Hantash FM (2001) Activation of extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-α-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res 61:6569–6576

    PubMed  CAS  Google Scholar 

  144. Meydani M (1995) Vitamin E. Lancet 345:170–175. doi:10.1016/S0140-6736(95)90172-8

    Article  PubMed  CAS  Google Scholar 

  145. Eicholzer M, Stalielin HB, Gey KF (1996) Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year old follow-up of the prospective basal study. Int J Cancer 66:145–150. doi :10.1002/(SICI)1097-0215(19960410)66:2<145::AID-IJC1>3.0.CO;2-2

    Article  Google Scholar 

  146. You H, Yu W, Sanders BG et al (2001) RRR-α-tocopheryl succinate induces MDA-MB-435 and MCF-7 human breast cancer cells to undergo differentiation. Cell Growth Differ 12:471–480

    PubMed  CAS  Google Scholar 

  147. Yu W, Sanders BG, Kline K (2002) RRR-α-tocopheryl succinate-induction of DNA synthesis arrest of human MDA-MB-435 cells involves TGF-β independent activation of p21 (Waf1/Cip1). Nutr Cancer 43:227–236. doi:10.1207/S15327914NC432_13

    Article  PubMed  CAS  Google Scholar 

  148. Prasad KN, Edwards-Prasad J (1992) Vitamin E and cancer prevention: recent advances and future potentials. J Am Coll Nutr 11:487–500

    PubMed  CAS  Google Scholar 

  149. You H, Yu W, Munoz-Medellin D (2002) Role of extracellular signal-regulated kinase pathway in RRR-alpha-tocopheryl succinate-induced differentiation of human MDA-MB-435 breast cancer cells. Mol Carcinog 33:228–236. doi:10.1002/mc.10040

    Article  PubMed  CAS  Google Scholar 

  150. Bob WY, Sanders G, Kline K (2003) RRR-α-tocopheryl succinate-induced apoptosis of human breast cancer cells involves bax translocation to mitochondria. Cancer Res 63:2483–2491

    Google Scholar 

  151. Charpentier A, Simmons-Menchaca M, Yu W (1996) RRR-α-tocopheryl succinate enhances TGF-β1, -β2, and -β3 and TGF-βR-II expression by human MDA-MB-435 breast cancer cells. Nutr Cancer 26:237–250

    PubMed  CAS  Google Scholar 

  152. Guthrie N, Gapor A, Chambers AF, Carroll KK (1997) Inhibition of proliferation of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast cancer cells by palm oil tocotrienols and tamoxifen, alone and in combination. J Nutr 127:544S–548S

    PubMed  CAS  Google Scholar 

  153. Yu W, Simmons-Menchaca M, Gapor A et al (1999) Induction of apoptosis in human breast cancer cells by tocopherols and tocotrienols. Nutr Cancer 33:26–32

    Article  PubMed  Google Scholar 

  154. Vogel VG (2007) Chemoprevention strategies. Curr Treat Options Oncol 8:74–88. doi:10.1007/s11864-007-0019-z

    Article  PubMed  Google Scholar 

  155. Day R, Ganz PA, Costantino JP et al (1999) Health-related quality of life and tamoxifen in breast cancer prevention: a report from the national surgical adjuvant breast and bowel project P–I Study. J Clin Oncol 17:2659–2669

    PubMed  CAS  Google Scholar 

  156. Vogel G (2001) Reducing the risk of breast cancer with tamoxifen in women at increased risk. J Clin Oncol 19:87–92

    Google Scholar 

  157. Vogel VG (2007) Raloxifene: a second generation selective estrogen receptor modulator for reducing the risk of invasive breast cancer in postmenopausal women. Womens Health 3:139–153. doi:10.2217/17455057.3.2.139

    CAS  Google Scholar 

  158. Bostwick DG, Burke HB, Wheeler TM (1994) The most promising surrogate endpoint biomarkers for screening candidate chemopreventive compounds for prostate adenocarcinoma in short-term phase II clinical trials. J Cell Biochem 19:283–289

    CAS  Google Scholar 

  159. Stadtzkin LS, Freedman LS, Stern HR (1996) Surrogate end points in cancer research: a critique. Cancer Epidemiol Biomarkers Prev 5:947–953

    Google Scholar 

  160. Merk JB, Rottey S, Olaussen K et al (2006) Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol Hematol 59:51–64. doi:10.1016/j.critrevonc.2006.01.003

    Article  Google Scholar 

  161. Harris RE, Beebe-Donk J, Doss H (2004) Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective cox-2 blockade. Oncol Rep 13:559–583

    Google Scholar 

  162. Parrett ML, Harris RE, Joarder FS (1997) Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncol 10:503–507

    CAS  Google Scholar 

  163. Masferrer JL, Leahy KM, Koki AT et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311

    PubMed  CAS  Google Scholar 

  164. Abbadessa G, Spaccamiglio A, Sartori ML et al (2006) The aspirin metabolite, salicylate, inhibits 7, 12-dimethylbenz[a]anthracene-DNA adduct formation in breast cancer cells. Int J Oncol 28:1131–1140

    PubMed  CAS  Google Scholar 

  165. Dipple A, Moschel RC, Bigger CAH (1984) Polynuclear aromatic carcinogens. In: Searle CE (ed) Chemical carcinogens. ACS monographs. American Chemical Society, Washington, DC

    Google Scholar 

  166. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast tissue. Endocr Relat Cancer 8:47–61. doi:10.1677/erc.0.0080047

    Article  PubMed  CAS  Google Scholar 

  167. Matsuoka Y, Fukamachi K, Uehara N et al (2008) Induction of a novel histone deacetylase 1/c-Myc/Mnt/Max complex formation is implicated in parity-induced refractoriness to mammary carcinogenesis. Cancer Sci 99:309–315. doi:10.1111/j.1349-7006.2007.00689.x

    Article  PubMed  CAS  Google Scholar 

  168. Thordarson G, Slusher N, Leong H et al (2004) Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-alpha activation via the mitogen-activated protein kinase pathway. Breast Cancer Res 6:423–436. doi:10.1186/bcr812

    Article  CAS  Google Scholar 

  169. Naili-Ito A, Asamoto M, Hokaiwado N et al (2007) Gpx2 is an overexpressed gene in rat breast cancer induced by three different chemical carcinogens. Cancer Res 67:11353–11358. doi:10.1158/0008-5472.CAN-07-2226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Cornelis J. (Neels) Van der Schyf, D.Sc., DTE, and Ms. Mary Paisley for critically reading and revising the manuscript, and Werner J. Geldenhuys, Ph.D., for technical assistance with chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bishayee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabi, T., Bishayee, A. Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 115, 223–239 (2009). https://doi.org/10.1007/s10549-008-0118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0118-y

Keywords

Navigation