Skip to main content

Advertisement

Log in

Tissue Inhibitor of Metalloproteinases-1 Stimulates Gene Expression in MDA-MB-435 Human Breast Cancer Cells by Means of its Ability to Inhibit Metalloproteinases

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a widely expressed, secreted protein that functions primarily to inhibit members of a large family of metalloproteinases (MPs). Because of the ability of TIMP-1 to inhibit MPs, it functions in many of the same pathophysiological processes as these enzymes, e.g. wound healing, ovulation, angiogenesis, and cancer cell metastasis. TIMP-1 can also stimulate proliferation ([3H]thymidine incorporation) and cellular anabolic processes (Alamar Blue reduction). This stimulation has been shown to be dependent on the MP-inhibitory ability of TIMP-1 in the human breast cancer cell line MDA-MB-435 (Porter et al., Br J Cancer 90: 463, 2004). To shed light on the mechanism by which TIMP-1 stimulates cellular anabolic processes, an oligonucleotide microarray analysis was performed over a time course of TIMP-1 treatment of MDA-MB-435 cells. Fifteen genes whose mRNAs were differentially regulated were identified. Six (Importin-7, MGC10471, FOXC1, subunit p20 of Arp2/3 complex, mitochondrial ribosomal protein L32, and the serine/threonine kinase-4 (MST1)) of these genes were confirmed by quantitative real time PCR. These same mRNAs were shown to be regulated by the synthetic hydroxamate MP-inhibitor GM6001 but not by its inactive derivative GM6001*, suggesting that the differential regulation occurs through the MP-inhibitory ability of TIMP-1. These results suggest a complex action of TIMP-1 on cancer cells mediated by constitutively active cell surface metalloproteinases that release factors regulating cell signaling pathways; they may account for the paradoxical observation that elevated levels of TIMP-1 in tumors can correlate with an adverse prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Brew D Dinakarpandian H Nagase (2000) ArticleTitleTissue inhibitors of metalloproteinases: evolution, structure and function Biochim Biophys Acta 1477 267–283 Occurrence Handle10708863

    PubMed  Google Scholar 

  2. AH Baker DR Edwards G Murphy (2002) ArticleTitleMetalloproteinase inhibitors: biological actions and therapeutic opportunities J Cell Sci 115 3719–3727 Occurrence Handle10.1242/jcs.00063 Occurrence Handle12235282

    Article  PubMed  Google Scholar 

  3. I Yana M Seiki (2002) ArticleTitleMT-MMPs play pivotal roles in cancer dissemination Clin Exp Metastasis 19 209–215 Occurrence Handle10.1023/A:1015527220537 Occurrence Handle12067201

    Article  PubMed  Google Scholar 

  4. MJ Duffy DJ Lynn AT Lloyd CM O’Shea (2003) ArticleTitleThe ADAMs family of proteins: from basic studies to potential clinical applications Thromb Haemost 89 622–631 Occurrence Handle12669115

    PubMed  Google Scholar 

  5. L Nakopoulou I Giannopoulou AC Lazaris P Alexandrou I Tsirmpa S Markaki E Panayotopoulou A Keramopoulos (2003) ArticleTitleThe favorable prognostic impact of tissue inhibitor of matrix metalloproteinases-1 protein overexpression in breast cancer cells APMIS 111 1027–1036 Occurrence Handle10.1111/j.1600-0463.2003.apm1111105.x Occurrence Handle14629269

    Article  PubMed  Google Scholar 

  6. KM Fong Y Kida PV Zimmerman PJ Smith (1996) ArticleTitleTIMP1 and adverse prognosis in non-small cell lung cancer Clin Cancer Res 2 1369–1372 Occurrence Handle9816309

    PubMed  Google Scholar 

  7. AH Ree VA Florenes JP Berg GM Maelandsmo JM Nesland O Fodstad (1997) ArticleTitleHigh levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases Clin Cancer Res 3 1623–1628 Occurrence Handle9815852

    PubMed  Google Scholar 

  8. K McCarthy T Maguire G McGreal E McDermott N O’Higgins MJ Duffy (1999) ArticleTitleHigh levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer Int J Cancer 84 44–48 Occurrence Handle10.1002/(SICI)1097-0215(19990219)84:1<44::AID-IJC9>3.0.CO;2-P Occurrence Handle9988231

    Article  PubMed  Google Scholar 

  9. L Nakopoulou I Giannopoulou K Stefanaki E Panayotopoulou I Tsirmpa P Alexandrou J Mavrommatis S Katsarou P Davaris (2002) ArticleTitleEnhanced mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in breast carcinomas is correlated with adverse prognosis J Pathol 197 307–313 Occurrence Handle10.1002/path.1129 Occurrence Handle12115876

    Article  PubMed  Google Scholar 

  10. AS Schrohl IJ Christensen AN Pedersen V Jensen H Mouridsen G Murphy JA Foekens N Brunner MN Holten-Andersen (2003) ArticleTitleTumor tissue concentrations of the proteinase inhibitors tissue inhibitor of metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor type 1 (PAI-1) are complementary in determining prognosis in primary breast cancer Mol Cell Proteomics 2 164–172 Occurrence Handle10.1074/mcp.M300019-MCP200 Occurrence Handle12672830

    Article  PubMed  Google Scholar 

  11. AS Schrohl MN Holten-Andersen HA Peters MP Look ME Meijer-van Gelder JG Klijn N Brunner JA Foekens (2004) ArticleTitleTumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer Clin Cancer Res 10 289–298

    Google Scholar 

  12. A Talvensaari-Mattila T Turpeenniemi-Hujanen (2005) ArticleTitleHigh preoperative serum TIMP-1 is a prognostic indicator for survival in breast carcinoma Breast Cancer Res Treat 89 29–34 Occurrence Handle10.1007/s10549-004-1006-8 Occurrence Handle15666194

    Article  PubMed  Google Scholar 

  13. Denhardt DT: On the paradoxical ability of TIMPs either to inhibit or to promote the development and progression of themalignant phenotype. In: Hawkes SP, Edwards DR, Khokha R (eds) Tissue Inhibitors of Metalloproteinases in Development and Disease. Harwood Academic Publishers, 2000, pp 137–151

  14. MS Lorenzo Particlede GV Ripoll H Yoshiji M Yamazaki UP Thorgeirsson DF Alonso DE Gomez (2003) ArticleTitleAltered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1 In Vivo 17 45–50 Occurrence Handle12655789

    PubMed  Google Scholar 

  15. JF Porter S Shen DT Denhardt (2004) ArticleTitleTissue inhibitor of metalloproteinase-1 stimulates proliferation of human cancer cells by inhibiting a metalloproteinases Br J Cancer 90 463–470 Occurrence Handle10.1038/sj.bjc.6601533 Occurrence Handle14735194

    Article  PubMed  Google Scholar 

  16. T Hayakawa K Yamashita K Tanzawa E Uchijima K Iwata (1992) ArticleTitleGrowth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells; a possible new growth factor in serum FEBS Lett 298 29–32 Occurrence Handle10.1016/0014-5793(92)80015-9 Occurrence Handle1544418

    Article  PubMed  Google Scholar 

  17. C Luparello G Avancato C Carella I Pucci-Minafra (1999) ArticleTitleTissue inhibitor of metalloprotease (TIMP)-1 and proliferative behaviour of clonal breast cancer cells Breast Cancer Res Treat 54 235–244 Occurrence Handle10.1023/A:1006121129382 Occurrence Handle10445422

    Article  PubMed  Google Scholar 

  18. K Yamashita M Suzuki H Iwata T Koike M Hamaguchi A Shinagawa T Noguchi T Hayakawa (1996) ArticleTitleTyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) FEBS Lett 396 103–107 Occurrence Handle10.1016/0014-5793(96)01066-6 Occurrence Handle8906876

    Article  PubMed  Google Scholar 

  19. T Wang K Yamashita K Iwata T Hayakawa (2002) ArticleTitleBoth tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways Biochem Biophys Res Commun 296 201–205 Occurrence Handle10.1016/S0006-291X(02)00741-6 Occurrence Handle12147251

    Article  PubMed  Google Scholar 

  20. F Mannello G Gazzanelli (2001) ArticleTitleTissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications Apoptosis 6 479–482 Occurrence Handle10.1023/A:1012493808790 Occurrence Handle11595838

    Article  PubMed  Google Scholar 

  21. SJ Lee HJ Yoo YS Bae HJ Kim ST Lee (2003) ArticleTitleTIMP-1 inhibits apoptosis in breast carcinoma cells via a pathway involving pertussis toxin-sensitive G protein and c-Src Biochem Biophys Res Commun 312 1196–1201 Occurrence Handle10.1016/j.bbrc.2003.11.050 Occurrence Handle14652000

    Article  PubMed  Google Scholar 

  22. G Li R Fridman HR Kim (1999) ArticleTitleTissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells Cancer Res 59 6267–6275 Occurrence Handle10626822

    PubMed  Google Scholar 

  23. XW Liu MM Bernardo R Fridman HR Kim (2003) ArticleTitleTissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/ phosphatidylinositol 3-kinase and MAPK signaling pathway J Biol Chem 278 40364–40372 Occurrence Handle10.1074/jbc.M302999200 Occurrence Handle12904305

    Article  PubMed  Google Scholar 

  24. R Khokha P Waterhouse S Yagel PK Lala CM Overall G Norton DT Denhardt (1989) ArticleTitleAntisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells Science 243 947–950 Occurrence Handle2465572

    PubMed  Google Scholar 

  25. H Yoshiji SR Harris E Raso DE Gomez CK Lindsay M Shibuya CC Sinha UP Thorgeirsson (1998) ArticleTitleMammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression Int J Cancer 75 81–87 Occurrence Handle10.1002/(SICI)1097-0215(19980105)75:1<81::AID-IJC13>3.0.CO;2-G Occurrence Handle9426694

    Article  PubMed  Google Scholar 

  26. S Sellappan R Grijalva X Zhou W Yang MB Eli GB Mills D Yu (2004) ArticleTitleLineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line Cancer Res 64 3479–3485 Occurrence Handle10.1158/0008-5472.CAN-3299-2 Occurrence Handle15150101

    Article  PubMed  Google Scholar 

  27. NM Hooper EH Karran AJ Turner (1997) ArticleTitleMembrane protein secretases Biochem J 321 265–279 Occurrence Handle9020855

    PubMed  Google Scholar 

  28. F Kheradmand Z Werb (2002) ArticleTitleShedding light on sheddases: role in growth and development Bioessays 24 8–12 Occurrence Handle10.1002/bies.10037 Occurrence Handle11782944

    Article  PubMed  Google Scholar 

  29. AM Dudley J Aach MA Steffen GM Church (2002) ArticleTitleMeasuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range Proc Natl Acad Sci USA 99 7554–7559 Occurrence Handle10.1073/pnas.112683499 Occurrence Handle12032321

    Article  PubMed  Google Scholar 

  30. JB Carmel O Kakinohana R Mestril W Young M Marsala RP Hart (2004) ArticleTitleMediators of ischemic preconditioning identified by microarray analysis of rat spinal cord Exp Neurol 185 81–96 Occurrence Handle10.1016/j.expneurol.2003.09.007 Occurrence Handle14697320

    Article  PubMed  Google Scholar 

  31. BR Avalos SE Kaufman M Tomonaga RE Williams DW Golde JC Gasson (1988) ArticleTitleK562 cells produce and respond to human erythroid-potentiating activity Blood 71 1720–1725 Occurrence Handle2836003

    PubMed  Google Scholar 

  32. B Bertaux W Hornebeck AZ Eisen L Dubertret (1991) ArticleTitleGrowth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases J Invest Dermatol 97 679–685 Occurrence Handle10.1111/1523-1747.ep12483956 Occurrence Handle1940438

    Article  PubMed  Google Scholar 

  33. L Chesler DW Golde N Bersch MD Johnson (1995) ArticleTitleMetalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1 Blood 86 4506–4515 Occurrence Handle8541540

    PubMed  Google Scholar 

  34. T Akahane M Akahane A Shah CM Connor UP Thorgeirsson (2004) ArticleTitleTIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms Exp Cell Res 301 158–167 Occurrence Handle10.1016/j.yexcr.2004.08.002 Occurrence Handle15530852

    Article  PubMed  Google Scholar 

  35. T Akahane M Akahane A Shah UP Thorgeirsson (2004) ArticleTitleTIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways Biochem Biophys Res Commun 324 440–445 Occurrence Handle10.1016/j.bbrc.2004.09.063 Occurrence Handle15465038

    Article  PubMed  Google Scholar 

  36. MH Lee K Maskos V Knauper P Dodds G Murphy (2002) ArticleTitleMapping and characterization of the functional epitopes of tissue inhibitor of metalloproteinases (TIMP)-3 using TIMP-1 as the scaffold: a new frontier in TIMP engineering Protein Sci 11 2493–2503 Occurrence Handle10.1110/ps.0216202 Occurrence Handle12237470

    Article  PubMed  Google Scholar 

  37. R Lang M Braun NE Sounni A Noel F Frankenne JM Foidart W Bode K Maskos (2004) ArticleTitleCrystal structure of the catalytic domain of MMP-16/MT3-MMP: characterization of MT-MMP specific features J Mol Biol 336 213–225 Occurrence Handle10.1016/j.jmb.2003.12.022 Occurrence Handle14741217

    Article  PubMed  Google Scholar 

  38. H Kolkenbrock L Essers N Ulbrich H Will (1999) ArticleTitleBiochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinases Biol Chem 380 1103–1108 Occurrence Handle10.1515/BC.1999.137 Occurrence Handle10543448

    Article  PubMed  Google Scholar 

  39. WR English G Velasco JO Stracke V Knauper G Murphy (2001) ArticleTitleCatalytic activities of membrane-type 6 matrix metalloproteinase (MMP25) FEBS Lett 491 137–142 Occurrence Handle10.1016/S0014-5793(01)02150-0 Occurrence Handle11226436

    Article  PubMed  Google Scholar 

  40. JM White (2003) ArticleTitleADAMs: modulators of cell-cell and cell-matrix interactions Curr Opin Cell Biol 15 598–606 Occurrence Handle10.1016/j.ceb.2003.08.001 Occurrence Handle14519395

    Article  PubMed  Google Scholar 

  41. A Amour CG Knight A Webster PM Slocombe PE Stephens V Knauper AJ Docherty G Murphy (2000) ArticleTitleThe in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3 FEBS Lett 473 275–279 Occurrence Handle10.1016/S0014-5793(00)01528-3 Occurrence Handle10818225

    Article  PubMed  Google Scholar 

  42. CW Franzke K Tasanen H Schacke Z Zhou K Tryggvason C Mauch P Zigrino S Sunnarborg DC Lee F Fahrenholz L Bruckner-Tuderman (2002) ArticleTitleTransmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs EMBO J 21 5026–5035 Occurrence Handle10.1093/emboj/cdf532 Occurrence Handle12356719

    Article  PubMed  Google Scholar 

  43. J Codony-Servat J Albanell JC Lopez-Talavera J Arribas J Baselga (1999) ArticleTitleCleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells Cancer Res 59 1196–1201 Occurrence Handle10096547

    PubMed  Google Scholar 

  44. H Lemjabbar C Basbaum (2002) ArticleTitlePlatelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells Nat Med 8 41–46 Occurrence Handle10.1038/nm0102-41 Occurrence Handle11786905

    Article  PubMed  Google Scholar 

  45. Y Yan K Shirakabe Z Werb (2002) ArticleTitleThe metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors J Cell Biol 158 221–226 Occurrence Handle10.1083/jcb.200112026 Occurrence Handle12119356

    Article  PubMed  Google Scholar 

  46. ML Moss MH Lambert (2002) ArticleTitleShedding of membrane proteins by ADAM family proteases Essays Biochem 38 141–153 Occurrence Handle12463167

    PubMed  Google Scholar 

  47. U Sahin G Weskamp K Kelly HM Zhou S Higashiyama J Peschon D Hartmann P Saftig CP Blobel (2004) ArticleTitleDistinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands J Cell Biol 164 769–779 Occurrence Handle10.1083/jcb.200307137 Occurrence Handle14993236

    Article  PubMed  Google Scholar 

  48. CA Lunn X Fan B Dalie K Miller PJ Zavodny SK Narula D Lundell (1997) ArticleTitlePurification of ADAM 10 from bovine spleen as a TNFalpha convertase FEBS Lett 400 333–335 Occurrence Handle10.1016/S0014-5793(96)01410-X Occurrence Handle9009225

    Article  PubMed  Google Scholar 

  49. WH Shen JH Zhou SR Broussard GG Freund R Dantzer KW Kelley (2002) ArticleTitleProinflammatory cytokines block growth of breast cancer cells by impairing signals from a growth factor receptor Cancer Res 62 4746–4756 Occurrence Handle12183434

    PubMed  Google Scholar 

  50. WH Shen Y Yin SR Broussard RH McCusker GG Freund R Dantzer KW Kelley (2004) ArticleTitleTumor necrosis factor alpha inhibits cyclin A expression and retinoblastoma hyperphosphorylation triggered by insulin-like growth factor-I induction of new E2F-1 synthesis J Biol Chem 279 7438–7446 Occurrence Handle10.1074/jbc.M310264200 Occurrence Handle14681231

    Article  PubMed  Google Scholar 

  51. T Tanaka K Tanaka S Ogawa M Kurokawa K Mitani Y Yazaki Y Shibata H Hirai (1997) ArticleTitleAn acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms Leukemia 11 IssueIDSuppl 3 299–302 Occurrence Handle10.1038/sj.leu.2400583

    Article  Google Scholar 

  52. JM Smith PA Koopman (2004) ArticleTitleThe ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease Trends Genet 20 4–8 Occurrence Handle10.1016/j.tig.2003.11.007 Occurrence Handle14698613

    Article  PubMed  Google Scholar 

  53. J Chu EH Bresnick (2004) ArticleTitleEvidence that C promoter-binding factor 1 binding is required for Notch-1-mediated repression of activator protein-1 J Biol Chem 279 12337–12345 Occurrence Handle10.1074/jbc.M311510200 Occurrence Handle14645224

    Article  PubMed  Google Scholar 

  54. T Mizutani Y Taniguchi T Aoki N Hashimoto T Honjo (2001) ArticleTitleConservation of the biochemical mechanisms of signal transduction among mammalian Notch family members Proc Natl Acad Sci USA 98 9026–9031 Occurrence Handle10.1073/pnas.161269998 Occurrence Handle11459941

    Article  PubMed  Google Scholar 

  55. Porter JF: Characterization of the metabolic stimulation caused by tissue inhibitor of metalloproteinases-1 on human breast cancer cells. Doctoral Dissertation, Rutgers University, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Denhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, J.F., Sharma, S., Wilson, D.L. et al. Tissue Inhibitor of Metalloproteinases-1 Stimulates Gene Expression in MDA-MB-435 Human Breast Cancer Cells by Means of its Ability to Inhibit Metalloproteinases. Breast Cancer Res Treat 94, 185–193 (2005). https://doi.org/10.1007/s10549-005-7728-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-7728-4

Keywords

Navigation