Skip to main content
Log in

Spatial and Temporal Characteristics of Set-Related Inhibitory and Excitatory Inputs from the Dorsal Premotor Cortex to the Ipsilateral Motor Cortex Assessed by Dual-Coil Transcranial Magnetic Stimulation

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The capacity to produce movements only at appropriate times is fundamental in successful behavior and requires a fine interplay between motor inhibition and facilitation. Evidence in humans indicates that the dorsal premotor cortex (PMCd) is involved in such preparatory and inhibitory processes, but how PMCd modulates motor output in humans is still unclear. We investigated this issue in healthy human volunteers, using a variant of the dual-coil transcranial magnetic stimulation (TMS) technique that allows testing the short-latency effects of conditioning TMS to the left PMCd on test TMS applied to the ipsilateral orofacial primary motor cortex (M1). Participants performed a delayed cued simple reaction time task. They were asked to produce a lip movement cued by an imperative GO-signal presented after a predictable SET-period, during which TMS was applied at different intervals. Results showed that the area of motor evoked potentials (MEPs) to test TMS was modulated by conditioning TMS. A transient inhibition cortico-bulbar excitability by PMCd stimulation was observed around the middle of the SET-period. Conversely, a ramping excitatory effect of PMCd stimulation appeared towards the end of the SET-period, as the time of the predicted GO-signal approached. The time-course of PMCd–M1 activity scaled to the varying SET-period duration. Our data indicate that inhibition and excitation of motor output during a delayed reaction time task are two distinct neural phenomena. They both originate in PMCd and are conveyed via cortico–cortical connections to the ipsilateral M1, where they are integrated to produce harmonic fluctuations of motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aron AR (2007) The neural basis of inhibition in cognitive control. Neurosci 13:214–228

    Google Scholar 

  • Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864

    Article  PubMed  CAS  Google Scholar 

  • Baumer T, Schippling S, Kroeger J, Zittel S, Koch G, Thomalla G, Rothwell JC, Siebner HR, Orth M, Munchau A (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest—a bifocal TMS study. Clin Neurophysiol 120:1724–1731

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Houdayer E, Richardson SP, Hallett M (2009) The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291

    Article  PubMed  Google Scholar 

  • Boy F, Husain M, Singh KD, Sumner P (2010) Supplementary motor area activations in unconscious inhibition of voluntary action. Exp Brain Res 206:441–448

    Article  PubMed  Google Scholar 

  • Brinkworth RS, Türker KS, Savundra AW (2003) Response of human jaw muscles to axial stimulation of the incisor. J Physiol 547(1):233–245

    Article  PubMed  CAS  Google Scholar 

  • Brodin P, Miles TS, Türker KS (1993) Simple reaction-time responses to mechanical and electrical stimuli in human masseter muscle. Arch Oral Biol 38(3):221–226

    Article  PubMed  CAS  Google Scholar 

  • Buch ER, Johnen VM, Nelissen N, O’Shea J, Rushworth MF (2011) Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci 31(48):17669–17679

    Article  PubMed  CAS  Google Scholar 

  • Burle B, Vidal F, Tandonnet C, Hasbroucq T (2004) Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn 56:153–164

    Article  PubMed  Google Scholar 

  • Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:1–13

    Article  Google Scholar 

  • Cattaneo L, Pavesi G (2013) The facial motor system. Neurosci Biobehav Rev 38:135159

    Google Scholar 

  • Cattaneo L, Macaluso GM, Pavesi G (2007) Inhibitory reflexes in human perioral facial muscles: a single-motor unit study. Clin Neurophysiol 118(4):794–801

    Article  PubMed  Google Scholar 

  • Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, NcNaught E, Kamke M, Mattingley JB (2007) Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 98:3638–3647

    Article  PubMed  Google Scholar 

  • Chambers CD, Garavan H, Bellgrove MA (2009) Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631–646

    Article  PubMed  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    Article  PubMed  CAS  Google Scholar 

  • Davare M, Lemon R, Olivier E (2008) Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol 586:2735–2742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci 13:1227–1243

    Article  PubMed  Google Scholar 

  • Duque J, Labruna L, Verset S, Olivier E, Ivry RB (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32:806–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duque J, Greenhouse I, Labruna L, Ivry RB (2017) Physiological markers of motor inhibition during human behavior. Trends Neurosci 40:219–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fadiga L, Craighero L, Buccino G, Rizzolatti G (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci 15(2):399–402

    Article  PubMed  Google Scholar 

  • Fiori F, Chiappini E, Soriano M, Paracampo R, Romei V, Borgomaneri S, Avenanti A (2016) Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area. Sci Rep 6:38396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiori F, Chiappini E, Candidi M, Romei V, Borgomaneri S, Avenanti A (2017) Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Sci Rep 7(1):14936

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Porter R (1988) Corticocortical synaptic influences on morphologically identified pyramidal neurons in the motor cortex of the monkey. J Physiol 400:617–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godschalk M, Lemon RN, Kuypers HGJM., Van Der Steen J (1985) The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements. Behav Brain Res 18:143–157

    Article  PubMed  CAS  Google Scholar 

  • Groppa S, Schlaak BH, Münchau A, Werner-Petroll N, Dünnweber J, Bäumer T, van Nuenen BFL, Siebner HR (2012) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430

    Article  PubMed  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwick RM, Lesage E, Eickhoff CR, Clos M, Fox P, Eickhoff SB (2015) Multimodal connectivity of motor learning-related dorsal premotor cortex. Neuroimage 123:114–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatanaka N, Nambu A, Yamashita A, Takada M, Tokuno H (2001) Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey. Neurosci Res 40:9–22

    Article  PubMed  CAS  Google Scholar 

  • Hoshi E, Tanji J, Gallivan JP, Mclean DA, Flanagan JR, Culham JC (2014) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128

    Article  Google Scholar 

  • Johansen-Berg H, Rushworth MFS, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99:14518–14523

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MT, Churchland MM, Santhanam G, Byron M, Afshar A, Ryu SI, Shenoy KV (2010) Roles of monkey premotor neuron classes in movement preparation and execution. J Neurophysiol 104(2):799–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9:765–770

    Article  PubMed  CAS  Google Scholar 

  • Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vis Res 46(11):1762–1776

    Article  PubMed  Google Scholar 

  • Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Fernandez Del Olmo M, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33(23):9725–9733

    Article  PubMed  CAS  Google Scholar 

  • Kroeger J, Bäumer T, Jonas M, Rothwell JC, Siebner HR, Münchau A (2010) Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. Eur J Neurosci 32(10):1771–1779

    Article  PubMed  Google Scholar 

  • Kurata K, Wise SP (1988a) Premotor and supplementary motor cortex in. Exp Brain Res 72:237–248

    Article  PubMed  CAS  Google Scholar 

  • Kurata K, Wise SP (1988b) Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp Brain Res 69:327–343

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, Chen R (2007) Interhemispheric and ipsilateral connections in Parkinson’s disease: relation to mirror movements. Mov Disord 22(6):813–821

    Article  PubMed  Google Scholar 

  • Maule F, Barchiesi G, Brochier T, Cattaneo L (2015) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex 25:528–537

    Article  PubMed  Google Scholar 

  • Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106(3):1454–1466

    Article  PubMed  CAS  Google Scholar 

  • Moll L, Kuypers HG (1977). Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198(4314):317–319

    Article  PubMed  CAS  Google Scholar 

  • Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124(1):176–208

    Article  PubMed  CAS  Google Scholar 

  • Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177:176–182

    Article  PubMed  CAS  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  PubMed  CAS  Google Scholar 

  • Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci 107(30):13240–13245

    Article  PubMed  Google Scholar 

  • Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh I-J, Chen R (2011) Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol 105:749–756

    Article  PubMed  Google Scholar 

  • O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MFS (2007) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095

    Article  PubMed  Google Scholar 

  • Parmigiani S, Barchiesi G, Cattaneo L (2015) The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study. Exp Brain Res 233:3253–3260

    Article  PubMed  Google Scholar 

  • Pavesi G, Macaluso GM, Marchetti P, Cattaneo L, Tinchelli S, De Laat A, Mancia D (2000) Trigemino-facial reflex inhibitory responses in some lower facial muscles. Muscle Nerve 23(6):939–945

    Article  PubMed  CAS  Google Scholar 

  • Pirio Richardson S, Beck S, Bliem B, Hallett M (2014) Abnormal dorsal premotor-motor inhibition in writer’s cramp. Mov Disord 29:797–803

    Article  PubMed  Google Scholar 

  • Riehle A, Grammont F, MacKay WA (2006) Cancellation of a planned movement in monkey motor cortex. Neuroreport 17:281–285

    Article  PubMed  Google Scholar 

  • Romei V, Chiappini E, Hibbard PB, Avenanti A (2016) Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr Biol 26(16):2155–2160

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Hallett M (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci 30:906–915

    Article  PubMed  Google Scholar 

  • Sato M, Buccino G, Gentilucci M, Cattaneo L (2010) On the tip of the tongue: modulation of the primary motor cortex during audiovisual speech perception. Speech Commun 52:533–541

    Article  Google Scholar 

  • Sattler V, Dickler M, Michaud M, Meunier S, Simonetta-Moreau M (2014) Does abnormal interhemispheric inhibition play a role in mirror dystonia? Mov Disord 29(6):787–796

    Article  PubMed  Google Scholar 

  • Sawaguchi T, Yamane I, Kubota K (1996) Application of the GABA antagonist bicuculline to the premotor cortex reduces the ability to withhold reaching movements by well-trained monkeys in visually guided reaching task. J Neurophysiol 75(5):2150–2156

    Article  PubMed  CAS  Google Scholar 

  • Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121:785–799

    Article  PubMed  Google Scholar 

  • Thura D, Cisek P (2014) Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Thura D, Cisek P (2016) Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J Neurosci 36:938–956

    Article  PubMed  CAS  Google Scholar 

  • Tokuno H, Nambu A (2000) Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: an electrophysiological study in the macaque monkey. Cereb Cortex 10:58–68

    Article  PubMed  CAS  Google Scholar 

  • Tokuno H, Tanji J (1993) Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J Comp Neurol 333:199–209

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis, vol 2. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  • Verbruggen F, Logan G (2008) Response inhibition in the stop-signal pardigm. Trends Cogn Sci 12:418–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417

    Article  PubMed  Google Scholar 

  • Vicario CM, Rafal RD, Borgomaneri S, Paracampo R, Kritikos A, Avenanti A (2016) Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc Cogn Affect Neurosci 12(2):352–362

    PubMed Central  Google Scholar 

  • Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cogn Neurosci 16:978–987

    Article  PubMed  Google Scholar 

  • Watkins KE, Strafella AP, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994

    Article  PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107(Pt 2):385–414

    Article  PubMed  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Mauritz KH (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set. Proc R Soc Lond B 223(1232), 331–354

    Article  PubMed  CAS  Google Scholar 

  • World Medical Association (2009) Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects

  • Zoghi M, Pearce SL, Nordstrom M (2003) Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J Physiol 550:933–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cattaneo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmigiani, S., Zattera, B., Barchiesi, G. et al. Spatial and Temporal Characteristics of Set-Related Inhibitory and Excitatory Inputs from the Dorsal Premotor Cortex to the Ipsilateral Motor Cortex Assessed by Dual-Coil Transcranial Magnetic Stimulation. Brain Topogr 31, 795–810 (2018). https://doi.org/10.1007/s10548-018-0635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0635-x

Keywords

Navigation