Skip to main content
Log in

Negative BOLD Response to Interictal Epileptic Discharges in Focal Epilepsy

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In EEG–fMRI studies, BOLD responses related to interictal epileptic discharges (IEDs) are most often the expected positive response (activation) but sometimes a surprising negative response (deactivation). The significance of deactivation in the region of IED generation is uncertain. The aim of this study was to determine if BOLD deactivation was caused by specific IED characteristics. Among focal epilepsy patients who underwent 3T EEG–fMRI from 2006 to 2011, those with negative BOLD having a maximum t-value in the IED generating region were selected. As controls, subjects with maximum activation in the IED generating region were selected. We established the relationship between the type of response (activation/deactivation) and (1) presence of slow wave in the IEDs, (2) lobe of epileptic focus, (3) occurrence as isolated events or bursts, (4) spatial extent of the EEG discharge. Fifteen patients with deactivation and 15 with activation were included. The IEDs were accompanied by a slow wave in 87 % of patients whose primary BOLD was a deactivation and only in 33 % of patients with activation. In the deactivation group, the epileptic focus was more frequently in the posterior quadrant and involved larger cortical areas, whereas in the activation group it was more frequently temporal. IEDs were more frequently of long duration in the deactivation group. The main factor responsible for focal deactivations is the presence of a slow wave, which is the likely electrographic correlate of prolonged inhibition. This adds a link to the relationship between electrophysiological and BOLD activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, Gotman J (2004) fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127(Pt 5):1127–1144. doi:10.1093/brain/awh136

    Article  PubMed  CAS  Google Scholar 

  • Al-Asmi A, Benar CG, Gross DW, Khani YA, Andermann F, Pike B, Dubeau F, Gotman J (2003) fMRI activation in continuous and spike-triggered EEG–fMRI studies of epileptic spikes. Epilepsia 44(10):1328–1339. doi:01003

    Article  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–239. doi:10.1006/nimg.2000.0599

    Article  PubMed  CAS  Google Scholar 

  • Amzica F (2009) Seizure initiation: the transition from sleep-related oscillations to epileptiform discharge. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research, vol 3. Academic Press, Oxford, pp 1343–1350

    Chapter  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145. doi:10.1097/00004647-200110000-00001

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw AP, Aghakhani Y, Benar CG, Kobayashi E, Hawco C, Dubeau F, Pike GB, Gotman J (2004) EEG–fMRI of focal epileptic spikes: analysis with multiple haemodynamic functions and comparison with gadolinium-enhanced MR angiograms. Hum Brain Mapp 22(3):179–192. doi:10.1002/hbm.20024

    Article  PubMed  Google Scholar 

  • Bénar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114(3):569–580

    Article  PubMed  Google Scholar 

  • Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG–fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30(4):1161–1170. doi:S1053-8119(05)02452-3

    Article  PubMed  Google Scholar 

  • Born AP, Law I, Lund TE, Rostrup E, Hanson LG, Wildschiodtz G, Lou HC, Paulson OB (2002) Cortical deactivation induced by visual stimulation in human slow-wave sleep. Neuroimage 17(3):1325–1335

    Article  PubMed  Google Scholar 

  • Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100(21):12456–12461. doi:10.1073/pnas.2132096100

    Article  PubMed  CAS  Google Scholar 

  • Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, Auer DP (2004) Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 20(2):566–574. doi:10.1111/j.1460-9568.2004.03518.x

    Article  PubMed  Google Scholar 

  • Engel J Jr, Williamson PD, Wieser HG (1997) Mesial temporale lobe epilepsy. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott-Raven Publishers, Philadelphia, pp 2417–2426

    Google Scholar 

  • Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J (2012) Widespread epileptic networks in focal epilepsies: EEG–fMRI study. Epilepsia 53(9):1618–1627. doi:10.1111/j.1528-1167.2012.03533.x

    Article  PubMed  Google Scholar 

  • Fisher RS, Prince DA (1977) Spike-wave rhythms in cat cortex induced by parenteral penicillin. I. Electroencephalographic features. Electroencephalogr Clin Neurophysiol 42(5):608–624

    Article  PubMed  CAS  Google Scholar 

  • Gloor P (1978) Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms. Electroencephalogr Clin Neurophysiol Suppl 34:245–249

    PubMed  Google Scholar 

  • Gotman J (2008) Epileptic networks studied with EEG–fMRI. Epilepsia 49(Suppl 3):42–51. doi:EPI1509

    Article  PubMed  Google Scholar 

  • Gotman J, Pittau F (2011) Combining EEG and fMRI in the study of epileptic discharges. Epilepsia 52(Suppl 4):38–42. doi:10.1111/j.1528-1167.2011.03151.x

    Article  PubMed  Google Scholar 

  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102(42):15236–15240. doi:0504935102

    Article  PubMed  CAS  Google Scholar 

  • Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L (2006) EEG–fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 31(4):1700–1710. doi:S1053-8119(06)00110-8

    Article  PubMed  Google Scholar 

  • Hamzei F, Dettmers C, Rzanny R, Liepert J, Buchel C, Weiller C (2002) Reduction of excitability (“inhibition”) in the ipsilateral primary motor cortex is mirrored by fMRI signal decreases. Neuroimage 17(1):490–496

    Article  PubMed  Google Scholar 

  • Hamzei F, Knab R, Weiller C, Rother J (2003) The influence of extra- and intracranial artery disease on the BOLD signal in FMRI. Neuroimage 20(2):1393–1399. doi:10.1016/S1053-8119(03)00384-7

    Article  PubMed  Google Scholar 

  • Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG (2002) Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 22(8):908–917. doi:10.1097/00004647-200208000-00002

    Article  PubMed  Google Scholar 

  • Jacobs J, Kobayashi E, Boor R, Muhle H, Stephan W, Hawco C, Dubeau F, Jansen O, Stephani U, Gotman J, Siniatchkin M (2007) Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 48(11):2068–2078. doi:10.1111/j.1528-1167.2007.01192.x

    Article  PubMed  Google Scholar 

  • Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG–fMRI. Neuroimage 45(4):1220–1231. doi:10.1016/j.neuroimage.2009.01.014

    Article  PubMed  Google Scholar 

  • Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27(6):488–497. doi:10.1002/hbm.20193

    Article  PubMed  Google Scholar 

  • Koos T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2(5):467–472. doi:10.1038/8138

    Article  PubMed  CAS  Google Scholar 

  • Laufs H (2012) A personalized history of EEG–fMRI integration. Neuroimage 62(2):1056–1067. doi:10.1016/j.neuroimage.2012.01.039

    Article  PubMed  Google Scholar 

  • Laufs H, Duncan JS (2007) Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot do. Curr Opin Neurol 20(4):417–423. doi:10.1097/WCO.0b013e3282202b9200019052-200708000-00008

    Article  PubMed  Google Scholar 

  • Laufs H, Hamandi K, Walker MC, Scott C, Smith S, Duncan JS, Lemieux L (2006) EEG–fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG. Magn Reson Imaging 24(4):367–371. doi:10.1016/j.mri.2005.12.026

    Article  PubMed  Google Scholar 

  • Logothetis NK (2012) Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously. Neuroimage 62(2):962–969. doi:10.1016/j.neuroimage.2012.01.033

    Article  PubMed  Google Scholar 

  • Manganotti P, Formaggio E, Gasparini A, Cerini R, Bongiovanni LG, Storti SF, Mucelli RP, Fiaschi A, Avesani M (2008) Continuous EEG–fMRI in patients with partial epilepsy and focal interictal slow-wave discharges on EEG. Magn Reson Imaging 26(8):1089–1100. doi:10.1016/j.mri.2008.02.023

    Article  PubMed  Google Scholar 

  • Naaman S, Bortel A, Mocanu V, Shmuel A (2011) Neurophysiological mechanisms of spontaneous fluctuations in blood-oxygenation signals. Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC [Online]

    Google Scholar 

  • Neckelmann D, Amzica F, Steriade M (2000) Changes in neuronal conductance during different components of cortically generated spike-wave seizures. Neuroscience 96(3):475–485

    Article  PubMed  CAS  Google Scholar 

  • Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10(12):1515–1517. doi:10.1038/nn2001

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955

    Article  PubMed  CAS  Google Scholar 

  • Pollen DA (1964) Intracellular studies of cortical neurons during thalamic induced wave and spike. Electroencephalogr Clin Neurophysiol 17:398–404

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi:10.1073/pnas.98.2.67698/2/676

    Article  PubMed  CAS  Google Scholar 

  • Rathakrishnan R, Moeller F, Levan P, Dubeau F, Gotman J (2010) BOLD signal changes preceding negative responses in EEG–fMRI in patients with focal epilepsy. Epilepsia 51(9):1837–1845. doi:10.1111/j.1528-1167.2010.02643.x

    Article  PubMed  Google Scholar 

  • Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C, Weiller C (2002) Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. Neuroimage 15(1):98–102. doi:10.1006/nimg.2001.0965

    Article  PubMed  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1:148–166. doi:S0006-8993(06)00524-5

    Article  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577. doi:10.1038/nn1675

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28(1):205–215. doi:10.1016/j.neuroimage.2005.05.038

    Article  PubMed  Google Scholar 

  • Suh M, Ma H, Zhao M, Sharif S, Schwartz TH (2006) Neurovascular coupling and oximetry during epileptic events. Mol Neurobiol 33(3):181–197. doi:10.1385/MN:33:3:181

    Article  PubMed  CAS  Google Scholar 

  • Taylor I, Scheffer IE, Berkovic SF (2003) Occipital epilepsies: identification of specific and newly recognized syndromes. Brain 126(Pt 4):753–769

    Article  PubMed  Google Scholar 

  • Thornton R, Vulliemoz S, Rodionov R, Carmichael DW, Chaudhary UJ, Diehl B, Laufs H, Vollmar C, McEvoy AW, Walker MC, Bartolomei F, Guye M, Chauvel P, Duncan JS, Lemieux L (2011) Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol 70(5):822–837. doi:10.1002/ana.22535

    Article  PubMed  Google Scholar 

  • Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. Neuroimage 15(1):1–15. doi:10.1006/nimg.2001.0933

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Natalja Zazubovits for helping to collect and analyze the data. Pittau F. thanks Dr. Gaetano Cantalupo for the thoughtful comments during the manuscript preparation. This work was supported by the Canadian Institutes of Health Research (CIHR) grant MOP-38079. Pittau F. was supported by the Savoy Foundation for epilepsy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gotman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittau, F., Fahoum, F., Zelmann, R. et al. Negative BOLD Response to Interictal Epileptic Discharges in Focal Epilepsy. Brain Topogr 26, 627–640 (2013). https://doi.org/10.1007/s10548-013-0302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0302-1

Keywords

Navigation