Skip to main content
Log in

Numerical Analysis of the Atmospheric Boundary-Layer Turbulence Influence on Microscale Transport of Pollutant in an Idealized Urban Environment

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The mesoscale atmospheric model Meso-NH is used to investigate the influence of mesoscale atmospheric turbulence on the mean flow, turbulence, and pollutant dispersion in an idealized urban-like environment, the array of containers investigated during the Mock Urban Setting Test field experiment. First, large-eddy simulations are performed as in typical computational fluid dynamics-like configurations, i.e., without accounting for the atmospheric- boundary-layer (ABL) turbulence on scales larger than the building scale. Second, in a multiscale configuration, turbulence of all scales prevailing in the ABL is accounted for by using the grid-nesting approach to downscale from the mesoscale to the microscale. The building-like obstacles are represented using the immersed boundary method and a new turbulence recycling method is used to enhance the turbulence transition between two nested domains. Upstream of the container array, flow characteristics such as wind speed, direction and turbulence kinetic energy are well reproduced with the multiscale configuration, showing the efficiency of the grid-nesting approach in combination with turbulence recycling for downscaling from the mesoscale to the microscale. Only the multiscale configuration is able to reproduce the mesoscale turbulent structures crossing the container array. The accuracy of the numerical results is evaluated for wind speed, wind direction, and pollutant concentration. The microscale numerical simulation of wind speed and pollutant dispersion in an urban-like environment benefits from taking into account the ABL turbulence. However, this benefit is significantly less important than that described in the literature for the Oklahoma City Joint Urban 2003 real case. The present study highlights that pollutant dispersion simulation improvement when accounting for ABL turbulence is dependent on the specific configuration of the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

References

  • Allwine KJ, Flaherty JE (2006) Joint Urban 2003: study overview and instrument locations. Pacific Northwest National Lab. (PNNL), Richland, WA (United States), Technical report

  • Allwine K, Leach M, Stockham L, Shinn J, Hosker R, Bowers J, Pace J (2004) J7. 1 Overview of Joint Urban 2003—an atmospheric dispersion study in Oklahoma City

  • Auguste F, Réa G, Paoli R, Lac C, Masson V, Cariolle D (2019) Implementation of an immersed boundary method in the Meso-NH v5.2 model: applications to an idealized urban environment. Geosci Model Dev 12(6):2607–2633

    Article  Google Scholar 

  • Auguste F, Lac C, Masson V, Cariolle D (2020) Large-eddy simulations with an immersed boundary method: pollutant dispersion over urban terrain. Atmosphere 113(11):200

    Google Scholar 

  • Biltoft CA (2001) Customer report for mock urban setting test. DPG Document Number 8-CO-160-000-052. Prepared for the Defence Threat Reduction Agency, Technical report

  • Blocken B (2015) Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245

    Article  Google Scholar 

  • Calhoun R, Gouveia F, Shinn J, Chan S, Stevens D, Lee R, Leone J (2004) Flow around a complex building: comparisons between experiments and a Reynolds-averaged Navier–Stokes approach. J Appl Meteorol 43(5):696–710

    Article  Google Scholar 

  • Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87(1–3):167–196

    Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104(2):229–259

    Article  Google Scholar 

  • Colella P, Woodward PR (1984) The piecewise parabolic method (ppm) for gas-dynamical simulations. J Comput Phys 54(1):174–201

    Article  Google Scholar 

  • Couvreux F, Bazile E, Rodier Q, Maronga B, Matheou G, Chinita MJ, Edwards J, van Stratum BJ, van Heerwaarden CC, Huang J et al (2020) Intercomparison of large-eddy simulations of the antarctic boundary layer for very stable stratification. Boundary-Layer Meteorol 176(3):369–400

    Article  Google Scholar 

  • Cox R, Bauer BL, Smith T (1998) A mesoscale model intercomparison. Bull Am Meteorol Soc 79(2):265–284

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30

    Article  Google Scholar 

  • Dauxois T, Peacock T, Bauer P, Caulfield C, Cenedese C, Gorlé C, Haller G, Ivey G, Linden P, Meiburg E et al (2021) Confronting grand challenges in environmental fluid mechanics. Phys Rev Fluid 6(2):020501

    Article  Google Scholar 

  • Dejoan A, Santiago J, Martilli A, Martin F, Pinelli A (2010) Comparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the must field experiment. Part II: effects of incident wind angle deviation on the mean flow and plume dispersion. Boundary-Layer Meteorol 135(1):133–150

    Article  Google Scholar 

  • Durran DR (1989) Improving the anelastic approximation. J Atmos Sci 46(11):1453–1461

    Article  Google Scholar 

  • Franke J, Hellsten A, Schlunzen KH, Carissimo B (2011) The cost 732 best practice guideline for CFD simulation of flow in the urban environment: a summary. Int J Environ Pollut 44(1–4):419–427

    Article  Google Scholar 

  • Gal-Chen T, Somerville RC (1975) On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J Comput Phys 17(2):209–228

    Article  Google Scholar 

  • García-Sánchez C, Gorlé C (2018) Uncertainty quantification for microscale CFD simulations based on input from mesoscale codes. J Wind Eng Ind Aerodyn 176:87–97

    Article  Google Scholar 

  • García-Sánchez C, van Beeck J, Gorlé C (2018) Predictive large eddy simulations for urban flows: challenges and opportunities. Build Environ 139:146–156

    Article  Google Scholar 

  • Hanna S, Chang J, Strimaitis D (1993) Hazardous gas model evaluation with field observations. Atmos Environ A Gen Top 27(15):2265–2285

    Article  Google Scholar 

  • Honnert R, Masson V, Lac C, Nagel T (2021) A theoretical analysis of mixing length for atmospheric models from micro to large scales. Front Earth Sci 8(582):056

    Google Scholar 

  • Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347

    Article  Google Scholar 

  • Jabouille P, Guivarch R, Kloos P, Gazen D, Gicquel N, Giraud L, Asencio N, Ducrocq V, Escobar J, Redelsperger JL, et al (1999) Parallelization of the French meteorological mesoscale model Méso-NH. In: European conference on parallel processing, Springer, pp 1417–1422

  • Kataoka H, Mizuno M (2002) Numerical flow computation around aerolastic 3D square cylinder using inflow turbulence. Wind Struct Int J 5(2/4):379–392

    Article  Google Scholar 

  • Kim W, Choi H (2019) Immersed boundary methods for fluid-structure interaction: a review. Int J Heat Fluid Flow 75:301–309

    Article  Google Scholar 

  • Lac C, Chaboureau P, Masson V, Pinty P, Tulet P, Escobar J, Leriche M, Barthe C, Aouizerats B, Augros C et al (2018) Overview of the Meso-NH model version 5.4 and its applications. Geosci Model Dev 11:1929–1969

    Article  Google Scholar 

  • Lin SJ, Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weather Rev 124(9):2046–2070

    Article  Google Scholar 

  • Lund TS, Xiohua W, Squires KD (1998) Generation of turbulent inflow data for spatially developing boundary layer simulations. J Comput Phys 140(2):233–258

    Article  Google Scholar 

  • Lundquist KA, Chow FK, Lundquist JK (2010) An immersed boundary method for the Weather Research and Forecasting model. Mon Weather Rev 138(3):796–817

    Article  Google Scholar 

  • Lundquist KA, Chow FK, Lundquist JK (2012) An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Mon Weather Rev 140(12):3936–3955

    Article  Google Scholar 

  • Lunet T, Lac C, Auguste F, Visentin F, Masson V, Escobar J (2017) Combination of WENO and explicit Runge–Kutta methods for wind transport in the Meso-NH model. Mon Weather Rev 145(9):3817–3838

    Article  Google Scholar 

  • Maronga B, Gryschka M, Heinze R, Hoffmann F, Kanani-Sühring F, Keck M, Ketelsen K, Letzel MO, Sühring M, Raasch S (2015) The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci Model Dev 2:2514–2551

    Google Scholar 

  • Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Barbu A, Boone A, Bouyssel F et al (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960

    Article  Google Scholar 

  • Mazzola T, Hanna S, Chang J, Bradley S, Meris R, Simpson S, Miner S, Gant S, Weil J, Harper M et al (2021) Results of comparisons of the predictions of 17 dense gas dispersion models with observations from the Jack Rabbit II chlorine field experiment. Atmos Environ 244(117):887

    Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in the atmospheric models Numerical methods used in the atmospheric (GARP)

  • Milliez M, Carissimo B (2007) Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorol 122(2):321–342

    Article  Google Scholar 

  • Muñoz-Esparza D, Kosović B, Mirocha J, van Beeck J (2014) Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary Layer Meteorol 153(3):409–440

    Article  Google Scholar 

  • Muñoz-Esparza D, Kosović B, van Beeck J, Mirocha J (2015) A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: application to neutrally stratified atmospheric boundary layers. Phys Fluids 27(3):035102

    Article  Google Scholar 

  • Park SB, Baik JI, Han BS (2015a) Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ Fluid Mech 15(2):235–250

  • Park SB, Baik JI, Lee SH (2015b) Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area. J Appl Meteorol Clim 54(4):811–824

  • Pirhalla M, Heist D, Perry S, Hanna S, Mazzola T, Arya SP, Aneja V (2020) Urban wind field analysis from the Jack Rabbit II special sonic anemometer study. Atmos Environ 243(117):871

    Google Scholar 

  • Rochoux M, Thouron L, Rea G, Auguste F, Jaravel T, Vermorel O (2021) Large-eddy simulation multi-model comparison of the MUST trial 2681829. Technical report - tr-cmgc-21-72

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Weather Rev 132(12):3019–3032

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note-475+ str

  • Stein J, Richard E, Lafore JP, Pinty J, Asencio N, Cosma S (2000) High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization. Meteorol Atmos Phys 72(2–4):203–221

    Article  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146-159

  • Tominaga Y, Stathopoulos T (2013) CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos Environ 79:716–730

    Article  Google Scholar 

  • Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192(2):593–623

    Article  Google Scholar 

  • Wiersema DJ, Lundquist KA, Chow FK (2020) Mesoscale to microscale simulations over complex terrains with the immersed boundary method in the weather research and forecasting model. Mon Weather Rev 148(2):577–595

    Article  Google Scholar 

  • Yang G, Causon DM, Ingram DM, Saunders R, Battent P (1997) A cartesian cut cell method for compressible flows. Part A: static body problems. Aeronaut J 101(1002):47–56

    Google Scholar 

  • Yee E, Biltoft CA (2004) Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Bound Layer Meteorol 111(3):363–415

    Article  Google Scholar 

  • Zängl G, Gantner L, Hartjenstein G, Noppel H (2004) Numerical errors above steep topography: a model intercomparison. Meteorol Z 13(2):69–76

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the three anonymous reviewers for their in-depth review and their constructive comments. We would like to thank the Defense Threat Reduction Agency (DTRA) for providing access to the MUST data. We would like to thank Mélanie Rochoux, Laëticia Thouron, Antoine Verrelle and Franck Auguste for the helpful discussions so as Quentin Rodier and Juan Escobar for their precious help with Meso-NH. Tim Nagel’s postdoctoral position was funded by the FCS-STAE foundation and the IRT Saint-Exupéry, Toulouse, under the PPM project and by the EU LIFE climate change adaptation 2018 project Generate REsiliENt actions agaiNst the HEat islAnd effect on uRban Territory (Green Heart; LIFE18 CCA/FR/001150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Nagel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagel, T., Schoetter, R., Masson, V. et al. Numerical Analysis of the Atmospheric Boundary-Layer Turbulence Influence on Microscale Transport of Pollutant in an Idealized Urban Environment. Boundary-Layer Meteorol 184, 113–141 (2022). https://doi.org/10.1007/s10546-022-00697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00697-7

Keywords

Navigation