Skip to main content
Log in

Stable Surface-Based Turbulent Layer During the Polar Winter at Dome C, Antarctica: Sodar and In Situ Observations

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An experiment to investigate atmospheric turbulence was performed at Concordia station (Dome C, Antarctica) during winter 2012, finding significant turbulence in a near-surface layer extending to heights of a few tens of metres, despite the strong stable stratification. The spatial and temporal behaviour of thermal turbulence is examined using a high-resolution sodar, starting from the lowest few metres with a vertical resolution better than 2 m. Sodar observations are complemented by in situ measurements using a weather station and radiometers near the surface, temperature and wind-speed sensors at six levels on a 45-m tower, and radiosondes. The depth of the surface-based turbulent layer (SBTL) at Dome C during the whole winter is directly measured experimentally for the first time, and has an average depth of ≈ 23 m, varying from a few to several tens of metres, while the inversion-layer depth ≈ 380 m. Relationships between the depth of the SBTL and atmospheric parameters such as the temperature, wind speed, longwave radiation, Brunt–Väisälä frequency and Richardson number are shown. The SBTL under steady weather conditions is analyzed and classified into three prevailing types: (i) a very shallow layer with a depth < 15 m, (ii) a shallow layer of depth 15–70 m with uniform internal structure, (iii) a shallow layer of depth 20–70 m with waves. Wave activity in the SBTL is observed during a significant portion of the time, with sometimes regular (with periodicity of 8–15 min) trains of Kelvin–Helmholtz billow-like waves occurring at periods of 20–60 s, and lasting several hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alpers W, Brandt P, Rubino A (2008) Internal waves generated in the Straits of Gibraltar and Messina: observations from space. In: Barale V, Gade M (eds) Remote sensing of the European Seas. Springer, Dordrecht, pp 319–330. https://doi.org/10.1007/978-1-4020-6772-3_24

    Chapter  Google Scholar 

  • André JC, Mahrt L (1982) The nocturnal surface inversion and influence of clear-air radiative cooling. J Atmos Sci 39:864–878

    Article  Google Scholar 

  • Argentini S, Petenko I, Mastrantonio G, Bezverkhnii V, Viola A (2001) Spectral characteristics of East Antarctica meteorological parameters during 1994. J Geophys Res 106:12463–12476

    Article  Google Scholar 

  • Argentini S, Mastrantonio G, Petenko I, Pietroni I, Viola A (2012) Use of a high-resolution sodar to study surface-layer turbulence at night. Boundary-Layer Meteorol 143:177–188

    Article  Google Scholar 

  • Argentini S, Pietroni I, Mastrantonio G, Viola A, Dargaud G, Petenko I (2014a) Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005. Antarct Sci 26(1):104–112. https://doi.org/10.1017/S0954102013000382

    Article  Google Scholar 

  • Argentini S, Petenko I, Pietroni I, Viola A, Mastrantonio G, Casasanta G, Aristidi E, Ghenton C (2014b) The surface layer observed by a high resolution sodar at Dome C. Antarct Ann Geophys. https://doi.org/10.4401/ag-6347

    Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63(11):3045–3054

    Article  Google Scholar 

  • Banta RM (2008) Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys 56:58–87

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105:221–252

    Article  Google Scholar 

  • Beyrich F (1997) Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31(23):3941–3953

    Article  Google Scholar 

  • Bretherton FP (1969) Waves and turbulence in stably stratified fluids. Radio Sci 4(12):1279–1287

    Article  Google Scholar 

  • Brown EH, Hall FF Jr (1978) Advances in atmospheric acoustics. Rev Geophys 16:47–110

    Article  Google Scholar 

  • Brun E, Six D, Picard Vionnet V, Arnaud L, Bazile E, Boone A, Bouchard A, Genthon C, Guidars V, Le Moigne P, Rabier F, Seity Y (2011) Snow/atmosphere coupled simulation at Dome C, Antarctica. J Glaciol 52:721–736. https://doi.org/10.3189/002214311797409794

    Article  Google Scholar 

  • Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled mixing layer height at Dome C, Antarctica. Part I: the convective boundary layer. Boundary-Layer Meteorol 151:597–608. https://doi.org/10.1007/s10546-014-9907-5

    Article  Google Scholar 

  • Drüe C, Heinemann G (2007) Characteristics of intermittent turbulence in the upper stable layer over Greenland. Boundary-Layer Meteorol 124:361–381. https://doi.org/10.1007/s10546-007-9175-8

    Article  Google Scholar 

  • Emmanuel CB, Bean BR, McAllister LU, Pollard JR (1972) Observation of Helmholtz waves in the lower atmosphere with an acoustic sounder. J Atmos Sci 29:886–892

    Article  Google Scholar 

  • Eymard L, Weill A (1979) A study of gravity waves in the planetary boundary layer by acoustic sounding. Boundary-Layer Meteorol 17:231–245

    Article  Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Lett 8:65–69

    Article  Google Scholar 

  • Garratt JR, Brost RA (1981) Radiative cooling within and above the nocturnal boundary layer. J Atmos Sci 38:2730–2746

    Article  Google Scholar 

  • Genthon C, Gallée H, Six D, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232. https://doi.org/10.1002/jgrd.50128

    Article  Google Scholar 

  • Gossard EE, Richter JH, Atlas D (1970) Internal waves in the atmosphere from high-resolution radar measurements. J Geophys Res Oceans Atmos 75:3523–3536. https://doi.org/10.1029/JC075i018p03523

    Article  Google Scholar 

  • Gossard EE, Gaynor JE, Zamora RJ, Neff WD (1985) Fine structure of elevated stable 1ayers observed by sounder and in situ tower sensors. J Atmos Sci 42:21562169

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147:51–82. https://doi.org/10.1007/s10546-012-9771-0

    Article  Google Scholar 

  • Gur’yanov AE, Kallistratova MA, Kutyrev AS, Petenko IV, Scheglov PV, Tokovinin AA (1992) The contribution of the lower atmospheric layers to the seeing at some mountain observatories. Astron Astrophys 262:373–381

    Google Scholar 

  • Holtslag AAM, Nieuwstadt FTM (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36:201–209

    Article  Google Scholar 

  • Hooke WH, Hall FF Jr, Gossard EE (1973) Observed generation of an atinospheric gravity wave by shear instability in the mean flow of the planetary boundary layer. Boundary-Layer Meteorol 5:29–41

    Article  Google Scholar 

  • Howard L (1961) Note on a paper of John W. Miles. J Fluid Mech 10:509–512

    Article  Google Scholar 

  • Joffre SM, Kangas M, Heikinheimo M, Kitaigorodskii SA (2001) Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Boundary-Layer Meteorol 99(3):429–450. https://doi.org/10.1023/A:10189565

    Article  Google Scholar 

  • Kallistratova MA, Petenko IV (1993) Aspect sensitivity of sound backscattering in the atmospheric boundary layer. Appl Phys B 57:41–48

    Article  Google Scholar 

  • King JC, Mobbs SD, Darby MS, Rees JM (1987) Observations of an internal gravity wave in the lower troposphere at Halley, Antarctica. Boundary-Layer Meteorol 39:1–13

    Article  Google Scholar 

  • Kitaigorodskii SA, Joffre SM (1988) In search of a simple scaling for the height of the stratified atmospheric boundary layer. Tellus 40A:419–433. https://doi.org/10.1111/j.1600-0870.1988.tb00359.x

    Article  Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130(601):2087–2103

    Article  Google Scholar 

  • Kouznetsov RD (2009) The summertime ABL structure over an Antarctic oasis with a vertical Doppler sodar. Meteorol Z 18:163–167

    Article  Google Scholar 

  • Lyulyukin VS, Kallistratova MA, Kouznetsov RD, Kuznetsov DD, Chunchuzov IP, Chirokova GYu (2015) Internal gravity-shear waves in the atmospheric boundary layer by the acoustic remote sensing data. Izv Atmos Ocean Phys 51(2):193–202

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Article  Google Scholar 

  • Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer Meteorol 135:1–18

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Ann Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Mahrt L, Vickers D (2006) Extremely weak mixing in stable conditions. Boundary-Layer Meteorol 119:19–39

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delaney T, Oncley S (1998) Nocturnal boundary layer regimes. Boundary-Layer Meteorol 88:255–278

    Article  Google Scholar 

  • Mahrt L, Richardson S, Seaman N, Stauffer D (2012) Turbulence in the nocturnal boundary layer with light and variable winds. Q J R Meteorol Soc 138:1430–1439

    Article  Google Scholar 

  • Melgarejo JW, Deardorff JW (1974) Stability functions for the boundary layer resistance laws based upon observed boundary layer heights. J Atmos Sci 31:1324–1333

    Article  Google Scholar 

  • Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10:496–508

    Article  Google Scholar 

  • Mironov D, Fedorovich E (2010) On the limiting effect of the Earth’s rotation on the depth of a stably stratified boundary layer. Q J R Meteorol Soc 136:1473–1480. https://doi.org/10.1002/qj.631

    Article  Google Scholar 

  • Neff W, Helmig D, Grachev A, Davis D (2008) A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer. Atmos Environ 42(12):2762–2779

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216. https://doi.org/10.1175/1520-0469(1984)041%3c2202:ttsots%3e2.0.CO;2

    Article  Google Scholar 

  • Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv Acad Nauk SSSR Ser Geogr Geofiz 13:58–69

    Google Scholar 

  • Petenko I, Mastrantonio G, Viola A, Argentini S, Pietroni I (2012) Wavy vertical motions in the ABL observed by sodar. Boundary-Layer Meteorol 143:125–141. https://doi.org/10.1007/s10546-011-9638-9

    Article  Google Scholar 

  • Petenko I, Pietroni I, Casasanta G, Argentini S, Viola A, Mastrantonio G (2013) Thermal turbulence in the very stable boundary layer: sodar observations at Dome C, Antarctica. In: Geophysical research abstracts, V.15, EGU2013-9442, EGU general assembly, Austria, Vienna, April 2013

  • Petenko I, Argentini S, Pietroni I, Viola A, Mastrantonio G, Casasanta G, Aristidi E, Bouchez G, Agabi A, Bondoux E (2014) Observations of optically active turbulence in the planetary boundary layer by sodar at the Concordia astronomical observatory, Dome C, Antarctica. Astron Astrophys 568(A44):1–10. https://doi.org/10.1051/0004-6361/201323299

    Google Scholar 

  • Petenko I, Argentini S, Kallistratova M, Mastrantonio G, Viola A, Sozzi R, Casasanta G, Conidi A (2015) Spatio-temporal pattern of the surface-based turbulent layer during polar winter at Dome C, Antarctica as observed by sodar. In: 15th EMS annual meeting and 12th European conference on applications of meteorology (ECAM), Sofia, 7–11 Sep 2015

  • Petenko I, Argentini S, Casasanta G, Kallistratova M, Viola A (2016) Wavelike structures observed in the turbulent layer during the morning development of convection at Dome C, Antarctica. Boundary-Layer Meteorol 161:289–307. https://doi.org/10.1007/s10546-016-0173-6

    Article  Google Scholar 

  • Pietroni I, Argentini S, Petenko I, Sozzi R (2012) Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica. Boundary-Layer Meteorol 143:189–206. https://doi.org/10.1007/s10546-011-9675-4

    Article  Google Scholar 

  • Pietroni I, Argentini S, Petenko I (2014) One year of surface-based temperature inversions at Dome C, Antarctica. Boundary-Layer Meteorol 150:131–151. https://doi.org/10.1007/s10546-013-9861-7

    Article  Google Scholar 

  • Salmond JA, McKendry IG (2005) A review of turbulence in the very stable boundary layer and its implications for air quality. Prog Phys Geogr 29:171–188

    Article  Google Scholar 

  • Schumann U, Gerz T (1995) Turbulent mixing in stably stratified shear flows. J Appl Meteorol 34:33–48

    Article  Google Scholar 

  • Seaman NL, Deng A, Stauffer DR (2002) Evaluation of a meteorological model for inter-regional transport. Final report CRC project no. A-28. Pennsylvania State University. http://www.crcao.com/reports/recentstudies00-02/A-28%20Final%20Report.PDF

  • Smedman A (1988) Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Boundary-Layer Meteorol 44:231–253. https://doi.org/10.1007/BF00116064

    Article  Google Scholar 

  • Sorbjan Z (2006) Local structure of turbulence in stably stratified boundary layers. J Atmos Sci 63:1526–1537

    Article  Google Scholar 

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. Q J R Meteorol Soc 136(650A):1243–1254

    Google Scholar 

  • Sorbjan Z, Grachev AA (2010) An evaluation of the flux–gradient relationship in the stable boundary layer. Boundary-Layer Meteorol 135(3):385–405

    Article  Google Scholar 

  • Sun J, Lenschow D, Burns S, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Balsley BB, Jensen M, Mahrt L, Miller D, Skelly B (2004) Intermittent turbulence in stable boundary layers and the processes that generate it. Boundary-Layer Meteorol 110:255–279

    Article  Google Scholar 

  • Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J Atmos Sci 69:338–351. https://doi.org/10.1175/JAS-D-11-082.1

    Article  Google Scholar 

  • Sun J et al (2015) Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev Geophys 53:956–993. https://doi.org/10.1002/2015RG000487

    Article  Google Scholar 

  • Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Van de Wiel BJH, Moene A, Hartogensis O, de Bruin HAR, Holtslag AAM (2002a) Intermittent turbulence in the stable boundary layer over land. Part I: a bulk model. J Atmos Sci 59:942–958

    Article  Google Scholar 

  • Van de Wiel BJH, Moene A, Ronda RI, de Bruin HAR, Holtslag AAM (2002b) Intermittent turbulence in the stable boundary layer over land. Part II: a system dynamics approach. J Atmos Sci 59:2567–2581

    Article  Google Scholar 

  • Van de Wiel BJH, Moene A, Hartogensis O, de Bruin HAR, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 60:2509–2522

    Article  Google Scholar 

  • Van Hooijdonk IGS, Donda J, Clercx H, Bosveld F, van de Wiel BJH (2015) Shear capacity as prognostic for nocturnal boundary-layer regimes. J Atmos Sci 72:1518–1532. https://doi.org/10.1175/JAS-D-14-0140.1

    Article  Google Scholar 

  • Van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J Clim Appl Meteorol 24:1196–1207. https://doi.org/10.1175/1520-0450(1985)024%3c1196:EOABLP%3e2.0.CO;2

    Article  Google Scholar 

  • Vignon E, van de Wiel BJH, van Hooijdonk IGS, Genthon C, van der Linden SJA, van Hooft JA, Baas P, Maurel W, Traullé O, Casasanta G (2017a) Stable boundary-layer regimes at Dome C, Antarctica: observation and analysis. Q J R Meteorol Soc 143(704):1241–1253. https://doi.org/10.1002/qj.2998 (Part A)

    Article  Google Scholar 

  • Vignon E, Genthon C, Barral H, Amory C, Picard G, Gallée H, Casasanta G, Argentini S (2017b) Momentum and heat flux parametrization at Dome C, Antarctica: a sensitivity study. Boundary-Layer Meteorol 162(2):341–367. https://doi.org/10.1007/s10546-016-0192-3

    Article  Google Scholar 

  • Yamada T (1976) On the similarity functions A, B and C of the planetary boundary layer. J Atmos Sci 33:781–793

    Article  Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125(2):167–191

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Italian National Programme of Researches in Antarctica (PNRA) and the Paul-Emile Victor French Polar Institute (IPEV) running the Concordia station for making possible a study in this special place. This research has been done in the framework of the projects “Mass lost in wind flux” (MALOX), and “Concordia multi-process atmospheric studies” (COMPASS) sponsored by the PNRA. A special thanks to P. Grigioni and all the stuff of the Antarctic Meteo-Climatological Observatory at Concordia of the PNRA for providing the data and information from the automatic weather station and radiosoundings obtained from the IPEV/PNRA Project “Routine Meteorological Observations at Station Concordia” (http://www.climantartide.it). M. Kallistratova acknowledges the Grant of the Russian Foundation for Basic Research, Project No 16-05-01072. The authors are also thankful to G. Mastrantonio, A. Viola, and A. Conidi for their assistance in preparing the experimental equipment, and to the logistics staff of the Concordia station for their help during the field work. We would like to thank three anonymous reviewers for their careful reading of our manuscript and many insightful comments and constructive suggestions. The authors are thankful to B. van de Wiel, A. Grachev, V. Gryanik, R. Sozzi, E. Vignon, and S. Zilitinkevich for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Petenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petenko, I., Argentini, S., Casasanta, G. et al. Stable Surface-Based Turbulent Layer During the Polar Winter at Dome C, Antarctica: Sodar and In Situ Observations. Boundary-Layer Meteorol 171, 101–128 (2019). https://doi.org/10.1007/s10546-018-0419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0419-6

Keywords

Navigation