Skip to main content

Advertisement

Log in

Effects of Explicit Urban-Canopy Representation on Local Circulations Above a Tropical Mega-City

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Advanced Regional Prediction System (ARPS) is coupled with the tropical town energy budget (tTEB) scheme to analyze the effects of the urban canopy circulation over the metropolitan area of São Paulo and its interactions with the sea breeze and mountain-valley circulation in the eastern state of São Paulo, Brazil. Two experiments are carried out for the typical sea-breeze event occurring on 22 August 2014 under weak synoptic forcing and clear-sky conditions: (a) a control run with the default semi-desert surface parametrization and; (b) a tTEB run for the urban canopy of São Paulo. A realistic land-use database over the south-eastern domain of Brazil is used in the downscaling simulation to a horizontal grid resolution of 3 km. Our results indicate that ARPS effectively simulates features of the nighttime and early morning land-breeze circulation, which is affected by the surrounding hills and the nocturnal heat island of São Paulo. By early afternoon, the south-eastern sea-breeze circulation moves inland perpendicular to the upslope of the Serra do Mar scarp, which generates a line of moisture convergence and updrafts further inland. Later, the convergence line reaches São Paulo and interacts with the circulation arising from the urban heat island (UHI), which increases the moisture convergence and strength of updrafts. The surface energy balance indicates that the UHI is caused by large sensible heat storage within the urban canopy during the day, which is later released in the afternoon and at night. The simulations are verified with available radiosonde and surface weather station data, land-surface-temperature estimates from the moderate resolution imaging spectroradiometer, as well as the National Center for Atmospheric Research reanalysis databases. The three-dimensional geometry of the urban canyons within the tTEB scheme consistently improves the thermodynamically-induced circulation over São Paulo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amorim J, Rodrigues V, Tavares R, Valente J, Borrego C (2013) CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. Sci Total Environ 461–462:541–551

    Article  Google Scholar 

  • Arnfield A, Mills G (1994) An analysis of the circulation characteristics and energy budget of a dry, asymmetric, eastwest urban canyon. II. Energy budget. Int J Climatol 14:239–261

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bohnnenstengel S, Evans S, Clark P, Belcher S (2011) Simulations of the london urban heat island. Q J R Meteorol Soc 137:1625–1640

    Article  Google Scholar 

  • Businger J, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Byun D (1990) On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J Appl Meteorol 29:652–657

    Article  Google Scholar 

  • Chen F, Pielke R, Mitchell K (2001) Development and application of land surface models for mesoscale atmospheric models: problems and promises. Am Geophys Union 1:107–136

    Google Scholar 

  • Cotton W, Pielke R Sr, Walko R, Liston G, Tremback C, Jiang H, Mcanelly R, Harrington J, Nicholls M, Carrio G, Mcfadden J (2003) Rams 2001: current status and future directions. Meteorol Atmos Phys 82:5–39

    Article  Google Scholar 

  • Deardorff J (1972b) Parameterization of the planetary boundary layer for use in general circulation models. Mon Weather Rev 100:93–106

    Article  Google Scholar 

  • Dousset B, Gourmelon F (2003) Satellite multi-sensor data analysis of urban surface temperatures and land cover. J Photogramm Remote Sens 58:43–54

    Article  Google Scholar 

  • Dudhia J, Bresch JF (2002) A Global Version of the PSU-NCAR Mesoscale Model. Mon Wea Rev 130:2989–3007

  • Flores J, Karam H, Marques Filho E, Pereira Filho A (2016a) Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in rio de janeiro-brasil. Theor Appl Climatol 123:593–617

    Article  Google Scholar 

  • Flores J, Pereira Filho A, Karam H (2016b) Estimation of long term low resolution surface urban heat island intensities for tropical cities using modis remote sensing data. Urban Clim 17:32–66

    Article  Google Scholar 

  • Freitas E, Rozoff C, Cotton W, Silva Dias P (2007) Interacions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Boundary-Layer Meteorol 122:43–65

    Article  Google Scholar 

  • Funari F, Pereira Filho A (2014) Energy balance in a patch of the atlantic forest in São Paulo City. Brazil. J Water Resource Prot 6(805):812

    Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J R Meteorol Soc 106:803–819

    Article  Google Scholar 

  • Gatunya Ganbat, Jong-Jin Baik, Young-Hee Ryu (2015) A numerical study of the interactions of urban breeze circulation with mountain slope winds. Theor Appl Climatol 120:123–135

    Article  Google Scholar 

  • Grachev A, Fairall C, Bradley E (2000) Convective profile constants revisited. Boundary-Layer Meteorol 83:423–439

    Article  Google Scholar 

  • Grimmond C, Oke T (1991) An evapotranspiration interception model for urban areas. Water Resour Res 27:1739–1755

    Article  Google Scholar 

  • Grimmond C, Oke T (1999b) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Heisler GM, Brazel AJ (2010) The urban physical environment: temperature and urban heat islands Chapter 2. In: Aitkenhead-Peterson J, Volder A (eds) Urban Ecosystem Ecology. Agronomy Monograph 55. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 29–56

  • Hidalgo Nunes L, Koga Vicente A, Henrique Candido D (2015) Tempo e Clima no Brasil - Clima da Regio Sudeste do Brasil, segunda edn. Oficina de textos

  • IBGE (2008) Instituto brasileiro de geografia e estatística. http://www.ibge.gov.br

  • Innocentini V (1981) Simulação numérica da brisa marítima: teste de sensibilidade e efeito de parametrizações de transportes turbulentos. Dissertação de mestrado IAG USP São Paulo 1:1–61

    Google Scholar 

  • Jacquemin B, Noilhan J (1990) Sensitivity study and validation of a land surface parameterization using the hapex-mobilhy data set. Boundary-Layer Meteorol 52:93–134

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the kain fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. Meteorological Monographs. American Meteorological Society, Boston, MA

  • Karam H, Oliveira A, Soares J (2003) Application of mass conservation method to investigate the wind patterns over an area of complex topography. J Braz Soc Mech Sci Eng 25:115–121

    Article  Google Scholar 

  • Karam H, Pereira Filho A, Masson V, Noilhan J, Marques Filho E (2010) Formulation of a tropical town energy budget (t-TEB) scheme. Theor Appl Climatol 101:109–120

    Article  Google Scholar 

  • Kastner-Klein P, Rotach M (2003) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111:55–84

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Lei M, Niyogi D, Kishtawal C, Pielke R, Beltrán-Przekurat A, Nobis T, Vaidya S (2008) Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over mumbai, india. Atmos Chem Phys 8:5975–5995

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach M (2002) An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorol 104:261–304

    Article  Google Scholar 

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux-profile relationship in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72:331–344

    Article  Google Scholar 

  • Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94(357):397

    Google Scholar 

  • Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45

    Article  Google Scholar 

  • Melas D, Lavagnini A, Sempreviva A (2000) An investigation of the boundary layer dynamics of sardinia island under sea-breeze conditions. J Appl Meteorol 39:516–524

    Article  Google Scholar 

  • Miller S, Keim B, Talbot R, Mao H (2003) Sea breeze: structure, forecasting and impacts. Rev Geophys 41:1–31

    Article  Google Scholar 

  • Moonena P, Gromkec C, Dorera V (2013) Performance assessment of large eddy simulation (LES) for modeling dispersion in an urban street canyon with tree planting. Atmos Environ 75:66–76

    Article  Google Scholar 

  • Noilhan J (1981) A model for the net total radiation flux at the surfaces of a building. Build Environ 16(4):259–266

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  Google Scholar 

  • Nunez M, Oke T (1976) Long-wave radiative flux divergence and nocturnal cooling of the urban atmosphere within an urban canyon. Boundary-Layer Meteorol 10:121–135

    Article  Google Scholar 

  • Oke T (1976) The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14:268–277

    Google Scholar 

  • Oke T (1987) Boundary layer climates, 1st edn. Taylor and Francis Group, London

    Google Scholar 

  • Oliveira de Souza D, dos Santos Alval R, Guedes do Nascimento M, (2016) Urbanization effects on the microclimate of manaus: a modeling study. Atmos Res 167:237–248

  • Pearlmutter D, Berliner P, Shaviv E (2005) Evaluation of urban surface energy fluxes using an open-air scale model. J Appl Meteorol 44:532–545

    Article  Google Scholar 

  • Pereira Filho A, Barros M, Hallak R, Gandu A (2004) Enchentes na região metropilitana de são paulo: aspectos de mesoescala e avaliação de impactos. XIII Congresso Brasileiro de Meterologia, Fortaleza, CE, 28 de Agosto a 03 de Setembro, 2004

  • Pielke R, Cotton W, Walko R (1992) A comprehensive meteorological modelling system—RAMS. Meteorol Atmos Phys 49:69–91

    Article  Google Scholar 

  • Ram K, Singh S, Sarin MM, Srivastava AK, Tripathi SN (2016) Variability in aerosol optical properties over an urban site, kanpur, in the indo-gangetic plain: a case study of haze and dust events. Atmos Res 174–175:52–61

    Article  Google Scholar 

  • Ribeiro F, Soares J, Oliveira A (2016) Sea-breeze and topographic influences on the planetary boundary layer in the coastal upwelling area of Cabo Frio (Brazil). Boundary-Layer Meteorol 158:139–150

    Article  Google Scholar 

  • Rotach M (1995) Profiles of turbulence statistics in and above and urban street canyon. Atmos Environ 29(13):1473–1486

    Article  Google Scholar 

  • Schultz P (1995) An explicit cloud physics paramterization for operational numerical weather prediction. Mon Weather Rev 123:3331–3343

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local wind, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Simpson JE (1996) Diurnal changes in sea-breeze direction. J Appl Meteorol 35:1166–1169

    Article  Google Scholar 

  • Streutker D (2002) Satellite-measured growth of the urban heat island of Houston, Texas. Int J Remote Sens 23:2595–2608

    Article  Google Scholar 

  • Synnefa A, Santamouris M, Apostolakis K (2007) On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy 81:488–497

    Article  Google Scholar 

  • Tarifa J, Azevedo T (2001) Os climas na cidade de São Paulo: teoría e prática, primeira edn. GEOUSP, Coleção Novos Caminhos

    Google Scholar 

  • Taylor P (1977) Numerical studies of neutrally stratified planetary boundary-layer flow above gentle topography. I. Two dimensional cases. Boundary-layer Meteorol 12:37–60

    Article  Google Scholar 

  • Urano A, Ichinose T, Hanaki K (1999) Thermal environment simulation for three dimensional replacement of urban activity. J Wind Eng 81:197–210

    Google Scholar 

  • Vemado F, Pereira Filho A (2016) Severe weather caused by heat island and sea breeze effects in the metropolitan area of São Paulo. Brazil. Adv Meteorol 8364:134

    Google Scholar 

  • Voogt J, Grimmond C (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39:1679–1699

    Article  Google Scholar 

  • Wan Z (1999) Modis land-surface temperature algorithm theoretical basis document. NASA Documents 3.3, URL http://modis.gsfc.nasa.gov/atbd/atbd-mod11.pdf

  • Wan Z, Li Z (1997) A physics-based algorithm for retrieving land surface temperature from space. Trans Geosci Remote Sens 34:892–905

    Google Scholar 

  • Wang X, Parrish D, Kleist D, Whitaker J (2013) GSI 3Dvar-based ensemblevariational hybrid data assimilation for NCEP global forecast system: single-resolution experiments. Mon Weather Rev 141:4098–4117

    Article  Google Scholar 

  • Xue M, Droegemeier K, Wong V, Shapiro A, Brewster K (2000a) Advanced regional prediction system (ARPS) version 5.3.4 user’s guide. Center for Analysis and Prediction of Storms (CAPS), University of Oklahoma, pp 320

  • Xue M, Droegmeier K, Wong V (2000b) The advanced regional prediction system (ARPS)–a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol Atmos Phys 1:1–45

    Google Scholar 

  • Xue M, Droegmeier K, Wong V (2001) The advanced regional prediction system (ARPS)–a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications. Meteorol Atmos Phys 76:143–165

    Article  Google Scholar 

  • Yamada T (2000) Building and terrain effects in a mesoscale model. In: 11th Conference on the applications of air pollution meteorology with A&WMA, 9–14 January, Long Beach, CA, vol 1, pp 215–200

Download references

Acknowledgements

We wish to thank to the “Conselho Nacional de Desenvolvimento Cientifico e Tecnologico” (CNPQ) (302349/20146) for the financial support during the research period. We also thank Dr. Ming Xue for important suggestions that helped improve the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Flores Rojas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores Rojas, J.L., Pereira Filho, A.J., Karam, H.A. et al. Effects of Explicit Urban-Canopy Representation on Local Circulations Above a Tropical Mega-City. Boundary-Layer Meteorol 166, 83–111 (2018). https://doi.org/10.1007/s10546-017-0292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0292-8

Keywords

Navigation