Skip to main content
Log in

Some Statistics of the Temperature Structure Parameter in the Convective Boundary Layer Observed by Sodar

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The characteristics of the temporal and height variations of the temperature structure parameter \(C_\mathrm{T}^{2}\) in strongly convective situations derived from the sodar echo-signal intensity measurements were analyzed for the first 100 m. It was corroborated that the probability density function (pdf) of the logarithm of \(C_\mathrm{T}^{2}\) in the lower convective boundary layer is markedly non-Gaussian, whereas turbulence theory predicts it to be normal. It was also corroborated that the sum of two weighted Gaussians, which characterize the statistics of \(C_\mathrm{T}^{2}\) within convective plumes and in their environment and the probability of plume occurrence, well approximates the observed pdfs. It was shown that the height behaviour of the arithmetic mean of \( C_\mathrm{T}^{2}\) (both total and within plumes) follows well a power law \(C_\mathrm{T}^{2} (z) \sim z^{-q}\) with the exponent \(q\) close to the theoretically predicted value of 4/3. But for the geometrical means of \(C_\mathrm{T}^{2}\) (both total and within the plumes), \(q\) is close to 1. The difference between arithmetically and geometrically averaged \(C_\mathrm{T}^{2}\) profiles was analyzed. The vertical profiles of the standard deviation, skewness and kurtosis of \(\hbox {ln}C_\mathrm{T}^{2}\) pdfs were analyzed to show their steady behaviour with height. The standard deviations of the logarithm of \(C_\mathrm{T}^{2}\) within the plumes and between them are similar and are 1.5 times less than the total standard deviation. The estimate of the variability index \(F_\mathrm{T}\) and its height behaviour were obtained, which can be useful to validate some theoretical and modelling predictions. The vertical profiles of the skewness and kurtosis show the negative asymmetry of pdfs and their flatness, respectively. The spectra of variations in \(\hbox {ln}C_\mathrm{T}^{2}\) are shown to be satisfactorily fitted by the power law \(f^{-\gamma } \) in the frequency range 0.02 and 0.2 Hz, with the average exponent \(\approx \)1.27 \(\pm \) 0.22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antonia RA, Atkinson JD (1973) High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer. J Fluid Mech 58:581–593

    Article  Google Scholar 

  • Argentini S, Mastrantonio G, Petenko I, Pietroni I, Viola A (2012) Use of a high resolution sodar to study surface-layer turbulence at night. Boundary-Layer Meteorol 143:177–188. doi:10.1007/s10546-011-9638-9

    Article  Google Scholar 

  • Asimakopoulos DN, Mousley TJ, Helmis CJ, Lalas DP, Gaynor JE (1983) Quantitative low-level acoustic sounding and comparison with direct measurements. Boundary-Layer Meteorol 27:1–26

    Article  Google Scholar 

  • Baerentsen JH, Berkowicz R (1984) Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos Environ 18:701–712

    Article  Google Scholar 

  • Beran DW, Little CG, Willmarth BC (1971) Acoustic Doppler measurements of vertical velocities in the atmosphere. Nature 230:160–162. doi:10.1038/230160a0

    Article  Google Scholar 

  • Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38:2916–2957

    Article  Google Scholar 

  • Brown EH, Hall FF Jr (1978) Advances in atmospheric acoustics. Rev Geophys 16:47–110

    Article  Google Scholar 

  • Burk SD (1981) Temperature and humidity effects on refractive index fluctuations in upper regions of the convective boundary layer. J Appl Meteorol 20:717–721. doi:10.1175/1520-0450(1981)020<0717:TAHEOR>2.0.CO;2

    Google Scholar 

  • Caughey SJ, Palmer SG (1979) Some aspects of turbulence structure through the depth of the convective boundary layer. Q J R Meteorol Soc 105:811–827

    Article  Google Scholar 

  • Caughey SJ, Kitchen SJ, Leighton JR (1983) Turbulence structure in convective boundary layers and implications for diffusion. Boundary-Layer Meteorol 25:345–352

    Article  Google Scholar 

  • Coulman CE (1978) Boundary-layer evolution and nocturnal inversion dispersal—part II. Boundary-Layer Meteorol 14:493–513

    Article  Google Scholar 

  • Coulter RL, Wesely ML (1980) Estimates of surface heat flux from sodar and laser scintillation measurements in the unstable boundary layer. J Clim Appl Meteorol 19:1209–1222. doi:10.1175/1520-0450(1980)019<1209:EOSHFF>2.0.CO;2

  • Danilov SD, Gur’yanov AE, Kallistratova MA, Petenko IV, Singal SP, Pahwa DR, Gera BS (1994) Simple method of calibration of conventional sodar antenna system. Int J Remote Sensing 15:307–312

    Article  Google Scholar 

  • Deardorf JW, Willis GE (1985) Laboratory studies of the entrainment zone of a convective mixed layer. J Fluid Mech 100:41–64

    Article  Google Scholar 

  • Druilhet A, Frangi JP, Guedalia D, Fontan J (1983) Experimental studies of the turbulence structure parameters of the convective boundary layer. J Clim Appl Meteorol 22:594–608. doi:10.1175/1520-0450(1983)022<0594:ESOTTS>2.0.CO;2

  • Du S, Wilson JD, Yee E (1994) Probability density functions for velocity in the convective boundary layer, and implied trajectory models. Atmos Environ 28:1211–1217

    Article  Google Scholar 

  • Fairall CW (1987) A top-down and bottom-up diffusion model of \(C_{T}^{2}\) and \(C_{Q}^{2}\) in the entraining convective boundary layer. J Atmos Sci 44:1009–1017. doi:10.1175/1520-0469(1987)044<1009:ATDABU>2.0.CO;2

  • Fairall CW, Markson R, Schacher GE, Davidson KL (1980) An aircraft study of turbulence dissipation rate and temperature structure function in the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 19:453–469

    Article  Google Scholar 

  • Fitzjarrald DE (1976) A field observation of atmospheric free convection. J Appl Meteorol 32:259–263

    Article  Google Scholar 

  • Frisch AS, Businger JA (1973) A study of convective elements in the atmospheric surface layer. Boundary-Layer Meteorol 3:301–328

    Article  Google Scholar 

  • Greenhut GK, Khalsa SJS (1982) Updraft and downdraft events in the atmospheric boundary layer over the equatorial Pacific Ocean. J Atmos Sci 39:1803–1818

    Article  Google Scholar 

  • Greenhut GK, Khalsa SJS (1987) Convective elements in the marine atmospheric boundary layer. Part I: conditional sampling statistics. J Clim Appl Meteorol 26:813–822

    Article  Google Scholar 

  • Greenhut GK, Mastrantonio G (1989) Turbulence kinetic energy budget profiles derived from Doppler sodar measurements. J Appl Meteorol 28:99–106

    Article  Google Scholar 

  • Gurvich AS (1985) Scattering of radiowaves and turbulence intermittency in the atmosphere. Izv Vyssh Uchebn Zaved Radiofiz 28:242–244

    Google Scholar 

  • Gurvich AS, Kukharets VP (1985) Effect of turbulence intermittency in the atmosphere on the wave scattering. Radiotech Electron 30:1531–1537

    Google Scholar 

  • Gur’yanov AE, Kallistratova MA, Karjukin GA, Kucharetz VP, Petenko IV, Zubkovsky SL (1981) Reliability of determinations of the vertical profile of the temperature structure parameter in the atmosphere by acoustic sounding. Izv Atmos Ocean Phys 17:107–111

    Google Scholar 

  • Gur’yanov AE, Kallistratova MA, Martvel FE, Pequr MS, Petenko IV, Time NS (1987) Comparision of sodar and microfluctuation measurements of the temperature structure parameter in mountainous terrain. Izv Atmos Ocean Phys 23:685–691

    Google Scholar 

  • Gur’yanov AE, Kallistratova MA, Kutyrev AS, Petenko IV, Shcheglov PV, Tokovinin AA (1992) The contribution of the lower atmospheric layers to the seeing at some mountain observatories. Astron Astrophys 262:373–381

    Google Scholar 

  • Harris CM (1968) Absorbtion of sound in air versus humidity and temperature. J Acoust Soc Am 140:148–159

    Google Scholar 

  • Hunt JCR, Kaimal JC, Gaynor JE (1988) Eddy structure in the convective boundary layer-new measurements and new concepts. Q J R Meteorol Soc 114:827–858

    Google Scholar 

  • Ivanov VN, Rusakov YS (1998) Features of spatial-temporal variability of temperature pulsations under convection. In: Mursch-Radlgruber E, Seibert P (eds) Proceedings 9th symposium acoustic remote sensing and associated techniques of the atmosphere and oceans, 6–10 July 1998, Austria, Vienna, pp 243–246

  • Kaimal JC, Wyngaard JC, Hauge DA, Coté OR, Izumi Y, Caughey SJ, Readings CJ (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169. doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2

    Google Scholar 

  • Kallistratova MA (1962) Experimental investigation of sound wave scattering in the atmosphere. Tr Akad Nauk SSSR, Inst Fiz Atmos 4:203–256 (USAF FTD, translation TT-63-441)

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85

    Article  Google Scholar 

  • Lenschow DH (1970) Airplane measurements of planetary boundary layer structure. J Appl Meteorol 9:874–884. doi:10.1175/1520-0450(1970)009<0874:AMOPBL>2.0.CO;2

  • Luhar AK, Britter RE (1989) A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer. Atmos Environ 23:1911–1924

    Article  Google Scholar 

  • Manton MJ (1977) On the structure of convection. Boundary-Layer Meteorol 12:491–503

    Article  Google Scholar 

  • Mastrantonio G, Fiocco G (1982) Accuracy of wind velocity determinations with Doppler Sodar. J Appl Meteorol 21:820–830

    Article  Google Scholar 

  • Melfi SH, Spinhirne JD, Chou S-H, Palm SP (1985) Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J Clim Appl Meteorol 24:806–821

    Article  Google Scholar 

  • Moeng C-H, Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closures in second-order modeling. J Atmos Sci 46:2311–2330

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol 2. MIT Press, Cambridge

    Google Scholar 

  • Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv Acad Nauk SSSR Ser Geogr Geofiz 13:58–69

    Google Scholar 

  • Obukhov AM (1960) The structure of the temperature and velocity fields under conditions of free convection. Izv Acad Nauk SSSR Ser Geofiz 9:928–930

    Google Scholar 

  • Peltier LJ, Wyngaard JC (1995) Structure–function parameters in the convective boundary layer from large eddy simulation. J Atmos Sci 52:3641–3660

    Article  Google Scholar 

  • Petenko IV (1996) Coherent structures properties derived from sodar data. In: Kallistratova MA (ed) Proceedings 8th symposium acoustic remote sensing and associated techniques of the atmosphere and oceans, 27–31 May 1996, Moscow, Russia, G.51–G.62

  • Petenko IV, Bezverkhnii VA (1999) Temporal scales of convective coherent structures derived from sodar data. Meteorol Atmos Phys 71:105–116

    Article  Google Scholar 

  • Petenko I, Shurygin Y (1996) Probability distribution of the echo-signal intensity in the convective atmospheric boundary layer. In: Kallistratova MA (ed) Proceedings 8th symposium acoustic remote sensing and associated techniques of the atmosphere and oceans, 27–31 May 1996, Moscow, Russia, 6.47–6.52

  • Petenko IV, Shurygin EA (1999) A two-regime model of the probability density function of the temperature structure parameter in the convective boundary layer. Boundary-Layer Meteorol 93:381–394

    Article  Google Scholar 

  • Pollard BD, Khanna S, Frasier SJ, Wyngaard JC, Thomson DW, McIntosh RE (2000) Local structure of the convective boundary layer from a volume-imaging radar. J Atmos Sci 57:2281–2296. doi:10.1175/1520-0469(2000)057<2281:LSOTCB>2.0.CO;2

    Google Scholar 

  • Rowland JR, Arnold A (1975) Vertical velocity structure and geometry of clear air convective elements. Preprints, 16th conference Radar Meteorology, Houston. American Meteorological Society, Boston, pp 296–303

  • Quintarelli F (1990) A study of vertical velocity distributions in the planetary boundary layer. Boundary-Layer Meteorol 52:209–219

    Article  Google Scholar 

  • Schmidt H, Shumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200:511–562

    Article  Google Scholar 

  • Sutherland LC (1975) Review of experimental data in support of a proposed new method for computing atmospheric absorption losses. Rep. TST-75-87, Department of Transportation, Washington

  • Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Tatarskii VI (1987) Some new aspects in the problem of waves and turbulence. Radio Sci 22:859–865

    Article  Google Scholar 

  • Taconet O, Weill A (1982) Vertical velocity field in the convective boundary layer as observed with an acoustic Doppler sodar. Boundary-Layer Meteorol 23:133–151

    Article  Google Scholar 

  • Taconet O, Weill A (1983) Convective plumes in the atmospheric boundary layer as observed with an acoustic Doppler sodar. Boundary-Layer Meteorol 25:143–158

    Article  Google Scholar 

  • Telford JW (1982) A theoretical value for von Karman’s constant. Pure Appl Geophys PAGEOPH 12:648–661

    Article  Google Scholar 

  • Thieme NS, Shurygin YeA, Nesterova TN (1987) The intermittence of turbulence and the fluctuations of echo return intensity in acoustic sounding in the convective atmosphere. Izv Atmos Ocean Phys 23:21–30

    Google Scholar 

  • Tsvang LR (1960) Measurements of spectra of temperature fluctuations in the free atmosphere. Izv Acad Nauk SSSR Ser Geofiz (Bull Acad Sci USSR Geophys Ser) 1:1117–1120

    Google Scholar 

  • Tsvang LR (1969) Microstructure of temperature fields in the free atmosphere. Radio Sci 4:1175–1177

    Article  Google Scholar 

  • Van den Kroonenberg AC, Martin S, Beyrich F, Bange J (2012) Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle. Boundary-Layer Meteorol 142:55–77

    Article  Google Scholar 

  • Warhaft Z (2000) Passive scalars in turbulent flows. Annu Rev Fluid Mech 32:203–240. doi:10.1146/annurev.fluid.32.1.203

    Article  Google Scholar 

  • Warner J, Telford JW (1967) Convection below cloud base. J Atmos Sci 24:374–382. doi:10.1175/1520-0469(1967)024<0374:CBCB>2.0.CO;2

    Google Scholar 

  • Weil JC (1990) A diagnosis of the assymetry in top-down and bottom-up diffusion using a Lagrangian stochastic model. J Atmos Sci 47:501–515

    Article  Google Scholar 

  • Weill A, Aubry M, Baudin F (1976) A study of temperature fluctuations in the atmospheric boundary layer. Boundary-Layer Meteorol 10:337–346

    Article  Google Scholar 

  • Weill A, Klapisz C, Strauss B, Baudin F, Jaupart C, Van Grunderbeeck P, Goutorbe JP (1980) Measuring heat flux and structure functions of temperature fluctuations with an acoustic Doppler sodar. J Appl Meteorol 19:199–205

    Article  Google Scholar 

  • Williams AG, Hacker JM (1993) Interaction between coherent eddies in the lower convective boundary layer. Boundary-Layer Meteorol 34:55–74

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA Jr (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

  • Wyngaard JC, Pennell WT, Lenschow DH, LeMone MA (1978) The temperature–humidity covariance budget in the convective boundary layer. J Atmos Sci 35:47–58. doi:10.1175/1520-0469(1978)035<0047:TTHCBI>2.0.CO;2

    Google Scholar 

  • Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37:1573–1585

    Article  Google Scholar 

  • Young GS (1988) Turbulence structure of the convective boundary layer. Part I: Phonenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45:727–735. doi:10.1175/1520-0469(1988)045<0727:TSOTCB>2.0.CO;2

  • Zhou MY, Lu N-P, Chen Y-J (1980) The detection of the temperature structure coefficient of the atmospheric boundary layer by acoustic radar. J Acoust Soc Am 68:303–308

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. A. Conidi for his assistance in experimental works, to Prof. M. Kallistratova for her help in the bibliography search, to Dr. A. Kumar for his help in editing the manuscript, and to anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Petenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petenko, I., Mastrantonio, G., Viola, A. et al. Some Statistics of the Temperature Structure Parameter in the Convective Boundary Layer Observed by Sodar. Boundary-Layer Meteorol 150, 215–233 (2014). https://doi.org/10.1007/s10546-013-9867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9867-1

Keywords

Navigation