Skip to main content
Log in

Resolved Versus Parametrized Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling in Large-Eddy Simulations

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A conditional sampling based on the combination of a passive tracer emitted at the surface and thermodynamic variables is proposed to characterise organized structures in large-eddy simulations of cloud-free and cloudy boundary layers. The sampling is evaluated against more traditional sampling of dry thermals or clouds. It enables the characterization of convective updrafts from the surface to the top of the boundary layer (or the top of cumulus clouds), describing in particular the transition from the sub-cloud to the cloud layer, and retrieves plume characteristics, entrainment and detrainment rates, variances and fluxes. This sampling is used to analyze the contribution of boundary-layer thermals to vertical fluxes and variances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht BA (1981) Parameterization of trade-cumulus cloud amounts. J Atmos Sci 38: 97–105

    Article  Google Scholar 

  • Atkinson BW, Zhang JW (1996) Mesoscale shallow convection in the atmosphere. Rev Geophys 34: 403–431

    Article  Google Scholar 

  • Berg L, Stull RB (2004) Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J Atmos Sci 61: 813–828

    Article  Google Scholar 

  • Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz M, Khairoutdinov JC, Lewellen DC, Lock AP, Macvean MK, Moeng CH, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Roy Meteorol Soc 128: 1075–1093

    Article  Google Scholar 

  • Chatfield RB, Brost RA (1987) A two-stream model of the vertical transport of trace species in the convective boundary layer. J Geophys Res 92: 13263–13276

    Article  Google Scholar 

  • Couvreux F, Guichard F, Redelsperger J-L, Kiemle C, Masson V, Lafore J-P, Flamant C (2005) Assessment of water vapour variability within a convective boundary layer over land using large eddy simulations and ihop observations. Q J Roy Meteorol Soc 131: 2665–2693

    Article  Google Scholar 

  • Couvreux F, Guichard F, Masson V, Redelsperger J-L (2007) Negative water vapour skewness and dry tongues in the convective boundary layer: observations and les budget analysis. Boundary-Layer Meteorol 123: 269–294

    Article  Google Scholar 

  • Crum TD, Stull RB, Eloranta EW (1987) Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J Clim Appl Meteorol 26: 774–788

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger J-L (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Greenhut GK, Khalsa SJS (1982) Updraft and downdraft events in the atmospheric boundary layer over the equatorial pacific ocean. J Atmos Sci 39: 1803–1817

    Article  Google Scholar 

  • Grossman RL (1984) Bivariate conditional sampling of moisture flux over a tropical ocean. J Atmos Sci 41: 3238–3253

    Article  Google Scholar 

  • Heus T, Jonker HJJ (2008) Subsiding shells around cumulus clouds. J Atmos Sci 65: 1003–1018

    Article  Google Scholar 

  • Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59: 1105–1123

    Article  Google Scholar 

  • Lafore J-P, Stein J, Ascencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Masson V, Pinty J-P, Redelsperger J-L, Richard E, Vil-Gueraude de Arellano J (1998) The meso-nh atmospheric simulation system. Part i: Adiabatic formulation and control simulations. Ann Geophys 16: 90–109

    Article  Google Scholar 

  • LeMone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon Weather Rev 104: 524–539

    Article  Google Scholar 

  • Lenschow DH, Stephens PL (1980) The role of thermals in the convective boundary layer. Boundary-Layer Meteorol 19: 509–532

    Article  Google Scholar 

  • Lenschow DH, Wyngaard JC, Pennel WT (1980) Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J Atmos Sci 37: 1313–1326

    Article  Google Scholar 

  • Miao Q, Geerts B, Lemone M (2006) Vertical velocity and buoyancy characteristics of coherent echo plumes in the convective boundary layer, detected by a profiling airborne radar. J Appl Meteorol Clim 45: 838–855

    Article  Google Scholar 

  • Moeng C, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51: 999–1022

    Article  Google Scholar 

  • Nicholls S, LeMone MA (1980) Fair weather boundary layer in GATE: the relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J Atmos Sci 37: 2051–2067

    Article  Google Scholar 

  • Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132: 83–106. doi:10.1007/s10546-009-9388-0

    Article  Google Scholar 

  • Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65: 407–425

    Article  Google Scholar 

  • Rio C, Couvreux F, Hourdin F (2010) Resolved versus parametrized boundary-layer plumes. Part II: A new formulation of mixing rates for mass-flux schemes. Boundary-Layer Meteorol (under review)

  • Schumann U, Moeng C-H (1991) Plume fluxes in clear and cloudy convective boundary layers. J Atmos Sci 48: 1746–1757

    Article  Google Scholar 

  • Siebesma AP, Cuijpers JWM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 52: 650–666

    Article  Google Scholar 

  • Siebesma AP, Teixeira J (2000) An advection-diffusion scheme for the convective boundary layer: description and 1d-results. In: Proceedings of the 14th symposium on boundary layers and turbulence, Aspen, CO, American Meteorological Society, pp 133–136

  • Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219

    Article  Google Scholar 

  • Siebesma AP, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64: 1230–1248

    Article  Google Scholar 

  • Soares PMM, Miranda PMA, Siebesma AP, Teixeira J (2004) An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Q J Roy Meteorol Soc 130: 3365–3383

    Article  Google Scholar 

  • Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34: 377–397

    Article  Google Scholar 

  • Wang S, Stevens B (2000) Top-hat representation of turbulence statistics in cloud-topped boundary layers: a large-eddy simulation study. J Atmos Sci 57: 423–441

    Article  Google Scholar 

  • Weckwerth TM, Parsons DB, Koch SE, Moore JA, LeMone MA, Demoz BB, Flamant C, Geerts B, Wang J, Feltz WF (2004) An overview of the international h20 project (IHOP 2002) and some preliminary highlights. Bull Am Meteorol Soc 85: 253–277

    Article  Google Scholar 

  • Williams AG, Hacker JM (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary-Layer Meteorol 61: 213–245

    Article  Google Scholar 

  • Wyngaard JC, Moeng C-H (1992) Parameterizing turbulent diffusion through the joint probability density. Boundary-Layer Meteorol 60: 1–13

    Article  Google Scholar 

  • Young GS (1988) Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735

    Article  Google Scholar 

  • Zhao M, Austin PH (2005) Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J Atmos Sci 62: 1269–1290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Couvreux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couvreux, F., Hourdin, F. & Rio, C. Resolved Versus Parametrized Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling in Large-Eddy Simulations. Boundary-Layer Meteorol 134, 441–458 (2010). https://doi.org/10.1007/s10546-009-9456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9456-5

Keywords

Navigation