Skip to main content
Log in

Maximal Overlap Wavelet Statistical Analysis With Application to Atmospheric Turbulence

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Statistical tools based on the maximal overlap discrete wavelet transform (MODWT) are reviewed, and then applied to a dataset of aircraft observations of the atmospheric boundary layer from the tropical eastern Pacific, which includes quasi-stationary and non-stationary segments. The wavelet methods provide decompositions of variances and covariances, e.g. fluxes, between time scales that effectively describe a broadband process like atmospheric turbulence. Easily understood statistical confidence bounds are discussed and applied to these scale decompositions, and results are compared to Fourier methods for quasi-stationary turbulence. The least asymmetric LA(8) wavelet filter yields coefficients that exhibit better uncorrelatedness across scales than the Haar filter and is better suited for decomposition of broadband turbulent signals. An application to a non-stationary segment of our dataset, namely vertical profiles of the turbulent dissipation rate, highlights the flexibility of wavelet methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

DWT:

Discrete Wavelet Transform

EDOF:

Equivalent Degrees Of Freedom

LA:

Least Asymmetric

MODWT:

Maximal Overlap Discrete Wavelet Transform

PSD:

Power Spectral Density

SST:

Sea Surface Temperature

References

  • Aldrich, E. (2005). ‘Alternative Estimators for Wavelet Variance’ Master’s thesis, Department of Statistics, University of Washington, Seattle, WA

    Google Scholar 

  • Cornish C. R., Percival D. B., Bretherton C. S. (2003). ‘The WMTSA Wavelet Toolkit for Data Analysis in the Geosciences’. EOS Trans AGU. 84(46): Fall Meet. Suppl., Abstract NG11A-0173

  • Craigmile, P. F. and Percival, D. B. (2005). ‘Asymptotic Decorrelation of Between-Scale Wavelet Coefficients’. IEEE Transactions on Information Theory 51, 1039–1048

    Article  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia

    Google Scholar 

  • De Szoeke, S. P., Bretherton, C. S., Bond, N. A., Cronin, M. F., and Morley, B. (2005). ‘EPIC 95° W Observations of the Eastern Pacific Atmospheric Boundary Layer from the Cold Tongue to the ITCZ’. J. Atmos. Sci. 62, 426–442

    Article  Google Scholar 

  • Garratt, J. R. (1992). The Atmospheric Boundary Layer Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Grossman, R. L. (1982). ‘An Analysis of Vertical Veolcity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer’ Boundary-Layer Meteorol. 23, 323–357

    Article  Google Scholar 

  • Howell, J. F. and Mahrt, L (1995). ‘Multiresolution Flux Decomposition’. Boundary-Layer Meteorol. 83, 117–137

    Article  Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J. (1976). ‘Turbulent Structure in the Convective Boundary Layer’. J. Atmos. Sci. 33, 2152–2169

    Article  Google Scholar 

  • Katul, G. G. and Parlange, M. B. (1994). ‘On the Active Role of Temperature in Surface-Layer Turbulence’. J. Atmos. Sci. 51, 2181–2195

    Article  Google Scholar 

  • Katul, G. G. and Parlange, M. B. (1995). ‘The Spatial Structure of Turbulence at Production Wavenumbers using Orthonormal Wavelets’. Boundary-Layer Meteorol. 75, 81–108

    Article  Google Scholar 

  • Kwon, B. H., Bé nech, B., Lambert, B., Durand, P., Druilhet, A., Giordani, H., and Planton, S. (1998). ‘Structure of the Marine Atmospheric Boundary Layer Over an Oceanic Thermal Front: SEMAPHORE Experiment’ J. Geophys. Res. 103(C11), 25159–25180

    Article  Google Scholar 

  • Mallat, S. G. (1989). ‘A Theory for Multiresolution Signal Decomposition: The Wavelet Representation’. IEEE Trans. Pattern Anal. and Machine Intell. 11, 674–93

    Article  Google Scholar 

  • Percival, D. B. and Walden, A. T. (1993). Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques Cambridge University Press, Cambridge

    Google Scholar 

  • Percival, D. B. and Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Raymond, D. J., Esbensen, S. K., Paulson, C., Gregg, M., Bretherton, C. S., Petersen, W. A., Cifelli, R., Shay, L. K., Ohlmann, C., and Zuidema, P. (2004). ‘EPIC2001 and the Coupled Ocean-Atmosphere System of the Tropical East Pacific’. Bull. Amer. Meteor. Soc. 85, 1341–1354

    Article  Google Scholar 

  • Réchou, A., Durand, P., Druilhet, A., and Bénech, B. (1995). ‘Turbulence Structure of the Boundary Layer below Marine Clouds in the SOFIA Experiment’. Ann. Geophysicae 13, 1075–1086

    Article  Google Scholar 

  • Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Whitcher, B. J., Guthorp, P., and Percival, D. B. (2000). ‘Wavelet Analysis of Covariance with Application to Atmospheric Time Series’ J. Geophys. Res. 105(D11), 14941, 14962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Cornish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornish, C.R., Bretherton, C.S. & Percival, D.B. Maximal Overlap Wavelet Statistical Analysis With Application to Atmospheric Turbulence. Boundary-Layer Meteorol 119, 339–374 (2006). https://doi.org/10.1007/s10546-005-9011-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9011-y

Keywords

Navigation