Skip to main content
Log in

Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cyclo Olefin Polymer (COP) based microbioreactors on a microfluidic chip were produced in house by hot-embossing and thermo-compression bonding methods. The chip allows two different experiments to be performed on trapped cells at the same time. On one side of the chip, red fluorescent protein (RFP) tagged nucleolar Nop56 protein was used to track changes in cell cycle as well as protein synthesis within the yeast cells under the application of the anti-tumor agent hydroxyurea (HU). Simultaneously, on the other side of the chip, the response of yeast cells to the drug metformin, mTOR inhibitor, was investigated to reveal the role of TOR signaling in ribosome biogenesis and cell proliferation. The results of 20 h long experiments are captured by taking brightfield and fluorescent microscopy images of the trapped cells every 9 min. The expression of Nop56 protein of ribosome assembly and synthesis was densely observed during G1 phase of cell cycle, and later towards the end of cell cycle the ribosomal protein expression slowed down. Under HU treatment, the morphology of yeast cells changed, but after cessation of HU, the biomass synthesis rate was sustained as monitored by the cell perimeter. Under metformin treatment, the perimeters of single cells were observed to decrease, implying a decrease in biomass growth; however these cells continued their proliferation during and after the drug application. The relation between ribosome biogenesis and cell cycle was successfully investigated on single cell basis, capturing cell-to-cell variations, which cannot be tracked by regular macroscale bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • G.M. Alvino, D. Collingwood, J.M. Murphy, J. Delrow, B.J. Brewer, M.K. Raghuraman, Mol. Cell. Biol. 27, 6396 (2007)

    Article  Google Scholar 

  • M.C. Bélanger, Y. Marois, J. Biomed. Mater. Res. 58, 467 (2001)

    Article  Google Scholar 

  • K.A. Bernstain, F. Bleichert, J.M. Bean, F.R. Cross, S.J. Baserga, Mol. Biol. Cell 18, 953 (2007)

    Article  Google Scholar 

  • H.M. Blank, R. Perez, C. He, N. Maitra, R. Metz, J. Hill, Y. Lin, C.D. Johnson, V.A. Bankaitis, B.K. Kennedy, R. Aramayo, M. Polymenis, EMBO J. 36, 487 (2017)

    Article  Google Scholar 

  • L.M. Bogomolnaya, R. Pathak, R. Cham, J. Guo, Y.V. Surovtseva, L. Jaeckel, M. Polymenis, Curr. Genet. 45, 350 (2004)

    Article  Google Scholar 

  • D.J. Burke, D. Church, Mol. Cell. Biol. 11, 3691 (1991)

    Article  Google Scholar 

  • C. Dez, D. Tollervey, Curr. Opin. Microbiol. 7, 631 (2004)

    Article  Google Scholar 

  • C. Dubacq, A. Chevalier, R. Courbeyrette, C. Petat, X. Gidrol, C. Mann, Mol. Gen. Genomics. 275, 114 (2006)

    Article  Google Scholar 

  • C. Dusny, A. Grünberger, Curr. Opin. Biotechnol. 63, 26 (2020)

    Article  Google Scholar 

  • I. Ebersberger, S. Simm, M.S. Leisegang, P. Schmitzberger, O. Mirus, V. Von Haeseler, M.T. Bohnsack, E. Schleiff, Nucleic Acids Res. 42, 1509 (2014)

    Article  Google Scholar 

  • D. Falconnet, R.J. Niemistö, M. Taylor, T.G. Ricicova, T. Galitski, I. Schmulevic, C.L. Hansen, Lab Chip 11, 466 (2011)

  • H.S. Fang, M.F. Lang, J. Sun, Chinese J. Anal. Chem. 47, 1293 (2019)

    Article  Google Scholar 

  • E. Gencturk, S. Mutlu, K.O. Ulgen, Biomicrofluidics 11 (2017)

  • Y.D. Gokdel, S. Mutlu, A.D. Yalcinkaya, J. Micromechanics Microengineering 20 (2010)

  • F. Gomez-Herreros, O. Rodriguez-Galan, M. Morillo-Huesca, D. Maya, M. Arista-Romero, J. de la Cruz, S. Chavez, M.C. Munoz-Centeno, J. Biol. Chem. 288, 31689 (2013)

    Article  Google Scholar 

  • N. Haandbæk, S.C. Bürgel, F. Rudolf, F. Heer, A. Hierlemann, ACS Sensors 1, 1020 (2016)

    Article  Google Scholar 

  • M.N. Hall, Transplant. Proc. 40, 5 (2008)

    Article  Google Scholar 

  • A.S. Hansen, N. Hao, E.K. OShea, Nat. Protoc. 10, 1181 (2015)

    Article  Google Scholar 

  • M.C. Jo, L. Qin, Small. 12, 5787 (2016)

    Article  Google Scholar 

  • L.H. Johnston, Curr. Genet. 2, 175 (1980)

    Article  Google Scholar 

  • Y. Kakihara, T. Makhnevych, L. Zhao, W. Tang, W.A. Houry, Genome Biol. 15, 404 (2014)

    Article  Google Scholar 

  • J. Kasznicki, A. Sliwinska, J. Drzewoski, Ann. Transl. Med. 2, 57 (2014)

    Google Scholar 

  • B.A. Kihlman, T. Eriksson, G. Odmark, Here 55, 386 (1966)

    Google Scholar 

  • A. Koç, L.J. Wheeler, C.K. Mathews, G.F. Merrill, J. Biol. Chem. 279, 223 (2004)

    Article  Google Scholar 

  • M. La Ferla, A. Mercatanti, G. Rocchi, S. Lodovichi, T. Cervelli, L. Pignata, M.A. Caligo, A. Galli, Mutat. Res. - Fundam. Mol. Mech. Mutagen. 774, 14 (2015)

    Article  Google Scholar 

  • D.L.J. Lafontaine, D. Tollervey, Mol. Cell. Biol. 20, 2650 (2000)

    Article  Google Scholar 

  • D.J. Leary, S. Huang, FEBS Lett. 509, 145 (2001)

    Article  Google Scholar 

  • H. Lempiäinen, D. Shore, Curr. Opin. Cell Biol. 21, 855 (2009)

    Article  Google Scholar 

  • K. Madaan, D. Kaushik, T. Verma, Expert. Rev. Anticancer. Ther. 12, 19 (2012)

    Article  Google Scholar 

  • Z.S. Marinkovic, C. Vulin, M. Acman, X. Song, J.M. Di Meglio, A.B. Lindner, P. Hersen, Elife 8, 1 (2019)

    Article  Google Scholar 

  • C. Mayer, I. Grummt, Oncogene 25, 6384 (2006)

    Article  Google Scholar 

  • I. E. Odabasi, E. Gencturk, S. Puza, S. Mutlu, and K. O. Ulgen, 1 (2018)

  • A. Piruska, I. Nikcevic, S.H. Lee, C. Ahn, W.R. Heineman, P.A. Limbach, C.J. Seliskar, Lab Chip.5, 1348 (2005)

    Article  Google Scholar 

  • M. Polymenis, R. Aramayo, Microb. Cell 2, 94 (2015)

    Article  Google Scholar 

  • T. Powers, P. Walter, Mol. Biol. Cell 10, 987 (1999)

    Article  Google Scholar 

  • S. Puza, E. Gencturk, I.E. Odabasi, E. Iseri, S. Mutlu, K.O. Ulgen, Biomed. Microdevices 19, 40 (2017)

    Article  Google Scholar 

  • F. Scala, E. Brighenti, M. Govoni, E. Imbrogno, F. Fornari, D. Treré, L. Montanaro, M. Derenzini, Oncogene 35, 977 (2016)

    Article  Google Scholar 

  • G.W. Schmidt, O. Frey, F. Rudolf, Methods Mol. Biol. 1672, 537 (2018)

    Article  Google Scholar 

  • F. Sherman, Encycl. Mol. Biol. Mol. Medinicine 6, 302 (1997)

    Google Scholar 

  • D.A. Sinclair, Mech. Ageing Dev. 126, 987 (2005)

    Article  Google Scholar 

  • M. Thapa, A. Bommakanti, M. Shamsuzzaman, B. Gregory, L. Samsel, J.M. Zengel, L. Lindahl, Mol. Biol. Cell 24, 3620 (2013)

    Article  Google Scholar 

  • E. Thomson, S. Ferreira-Cerca, E. Hurt, J. Cell Sci. 126, 4815 (2013)

    Article  Google Scholar 

  • M.W. Toepke, D.J. Beebe, Lab Chip 6, 1484 (2006)

    Article  Google Scholar 

  • T. Trantidou, Y. Elani, E. Parsons, O. Ces, Microsystems Nanoeng. 3, 16091 (2017)

    Article  Google Scholar 

  • J.L. Woolford, S.J. Baserga, Genetics 195, 643 (2013)

    Article  Google Scholar 

  • B.Y. Yu, C. Elbuken, C. Shen, J.P. Huissoon, C.L. Ren, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  • X. Zhao, C. Luo, H. Wang, Integr. Biol. 11, 79 (2019)

    Article  Google Scholar 

  • Y. Zheng, Y. Jiang, Mol. Cell. Pharmacol. 7, 15 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Bogazici University Research Fund through projects 13641D and 14261R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kutlu O. Ulgen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gencturk, E., Yurdakul, E., Celik, A.Y. et al. Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability. Biomed Microdevices 22, 20 (2020). https://doi.org/10.1007/s10544-020-0474-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-0474-x

Keywords

Navigation