Skip to main content
Log in

On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Bubbles locating in microfluidic chamber can produce acoustic streaming vortices by applying travelling surface acoustic wave oscillation in an ultrasonic range, which can be used to drive bio-samples to move within the flow field. In this paper, a strategy of bubble array configured in a large number of regularly arranged horseshoe structures is proposed to capture and rotate cells simultaneously. By modifying the geometric parameters of the horseshoe structure and microfluidic setting, high bubble homogeneity and cell trapping percentage was achieved. The simulation and experimental results of the bubble-induced streaming vortices were confirmed to be consistent. Through experiments, we achieved both in-plane and out-of-plane rotation of arrayed HeLa cells trapped by the bubbles. Out-of-plane rotation was used to reconstruct the 3D (three-dimensional) cell morphology, which was demonstrated to be useful in calculating cell geometry related parameters. We believe that this bubble array based cell rotation method is expected to be a promising tool for the investigation of bioengineering, biophysics, medicine, and cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • D. Ahmed, X. Mao, J. Shi, B.K. Juluri, T.J. Huang, A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9, 2738–2741 (2009)

    Article  Google Scholar 

  • D. Ahmed, C.Y. Chan, S.C.S. Lin, H.S. Muddana, N. Nama, S.J. Benkovic, T.J. Huang, Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13, 328–331 (2013)

    Article  Google Scholar 

  • D. Ahmed, H.S. Muddana, M. Lu, J.B. French, A. Ozcelik, Y. Fang, P.J. Butler, S.J. Benkovic, A. Manz, T.J. Huang, Acoustofluidic chemical waveform generator and switch. Anal. Chem. 86, 11803–11810 (2014)

    Article  Google Scholar 

  • D. Ahmed, M. Lu, A. Nourhani, P.E. Lammert, Z. Stratton, H.S. Muddana, V.H. Crespi, T.J. Huang, Selectively manipulable acoustic-powered microswimmers. Sci. Rep. 5, 9744 (2015)

    Article  Google Scholar 

  • D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, T.J. Huang, Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016)

    Article  Google Scholar 

  • L. Alberdi, S. Méresse, Single-cell analysis: Understanding infected cell heterogeneity. Virulence 8, 605–606 (2017)

    Article  Google Scholar 

  • P. Benhal, J.G. Chase, P. Gaynor, B. Oback, W. Wang, AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14, 2717–2727 (2014)

    Article  Google Scholar 

  • P. Benhal, G. Chase, P. Gaynor, B. Oback, W. Wang, Multiple- ylindrical electrode system for rotational electric field generation in particle rotation applications. Int. J. Adv. Robot. Syst. 12(7), 84 (2015)

    Article  Google Scholar 

  • N. Bertin, T.A. Spelman, O. Stephan, L. Gredy, M. Bouriau, E. Lauga, P. Marmottant, Propulsion of bubble-based acoustic microswimmers. Phys Rev. Appl. 4, 064012 (2015)

    Article  Google Scholar 

  • H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab Chip 12, 20–28 (2012)

    Article  Google Scholar 

  • F. Buettner, K.N. Natarajan, F.P. Casale, V. Proserpio, A. Scialdone, F.J. Theis, S.A. Teichmann, J.C. Marioni, O. Stegle, Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015)

    Article  Google Scholar 

  • H. Chen, Y. Gao, K. Petkovic, S. Yan, M. Best, Y. Du, Y. Zhu, Reproducible bubble-induced acoustic microstreaming for bead disaggregation and immunoassay in microfluidics. Microfluid. Nanofluid. 21, 30 (2017)

    Article  Google Scholar 

  • Y. Cheng, Y. Wang, Z. Ma, W. Wang, X. Ye, A bubble- and clogging-free microfluidic particle separation platform with multifiltration. Lab Chip 16(23), 4517–4526 (2016)

    Article  Google Scholar 

  • Y. Cheng, Y. Wang, Z. Wang, H. Liang, M. Bi, W. Xu, W. Wang, X. Ye, A mechanical cell disruption microfluidic platform based on an on-chip micropump. Biomicrofluidics 11(2), 024112 (2017)

    Article  Google Scholar 

  • C. Chindam, N. Nama, M.I. Lapsley, F. Costanzo, T.J. Huang, Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices. J. Appl. Phys. 114, 194503 (2013)

    Article  Google Scholar 

  • W. Cui, W. Pang, Y. Yang, T. Li, X. Duan, Theoretical and experimental characterizations of gigahertz acoustic streaming in microscale fluids. Nanotechnology and Precision Engineering 2(1), 15–22 (2019)

    Article  Google Scholar 

  • E.M. Darling, S. Zauscher, J.A. Block, F. Guilak, A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential? Biophys. J. 92, 1784–1791 (2007)

    Article  Google Scholar 

  • D. Di Carlo, K.H. Jeong, L.P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3, 287–291 (2003)

    Article  Google Scholar 

  • X. Ding, S.C.S. Lin, B. Kiraly, H. Yue, S. Li, I.K. Chiang, J. Shi, S.J. Benkovic, T.J. Huang, On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. P. Natl. Acad. Sci. U. S. A. 109, 11105–11109 (2012)

  • J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He, T. Li, G. Luan, L. Kong, Z. Zheng, Q. Dai, Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photonics, published online, https://doi.org/10.1038/s41566-019-0474-7 (2019)

  • Y. Feng, H. Liang, P. Zhao, F. Liang, W. Wang, A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. Anal. Chem. 91(23), 15204–15212 (2019)

    Article  Google Scholar 

  • N. Garg, T.M. Westerhof, V. Liu, R. Liu, E.L. Nelson, A.P. Lee, Whole-blood sorting, enrichment and in situ immunolabeling of cellular subsets using acoustic microstreaming. Microsyst. Nanoeng. 4, 17085 (2018)

    Article  Google Scholar 

  • A. Ghanbari, V. Nock, S. Johari, R. Blaikie, X.Q. Chen, W. Wang, A micropillar-based on-chip system for continuous force measurement of. J. Micromech. Microeng. 22(9), 095009 (2012)

    Article  Google Scholar 

  • D.R. Gossett, H.T. Tse, J.S. Dudani, K. Goda, T.A. Woods, S.W. Graves, D. Di Carlo, Inertial manipulation and transfer of microparticles across laminar fluid streams. Small 8, 2757–2764 (2012)

    Article  Google Scholar 

  • B. Gupta, P. Rezai, Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 7(123) (2016)

  • J.J. Hawkes, M.S. Limaye, W.T. Coakley, Filtration of bacteria and yeast by ultrasound-enhanced sedimentation. J. Appl. Microbiol. 82, 39–47 (1997)

    Article  Google Scholar 

  • W. He, H. Liang, Y. Feng, F. Liang, W. Ding, W. Wang, Highly integrated microfluidic device for cell pairing, fusion and culture. Biomicrofluidics 13(5), 054109 (2019)

    Article  Google Scholar 

  • N. Hu, J. Yang, S.W. Joo, A.N. Banerjee, S. Qian, Cell electrofusion in microfluidic devices: A review. Sensor. Actuat. B-Chem. 178, 63–85 (2013)

    Article  Google Scholar 

  • L. Huang, L. Tu, X. Zeng, L. Mi, X. Li, W. Wang, Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation. Micromachines 7(8) 141 (2016)

  • L. Huang, S. Bian, Y. Cheng, G. Shi, P. Liu, X. Ye, W. Wang, Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. Biomicrofluidics 11, 011501 (2017)

    Article  Google Scholar 

  • L. Huang, P. Zhao, W. Wang, 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab Chip 18, 2359–2368 (2018a)

    Article  Google Scholar 

  • L. Huang, P. Zhao, J. Wu, H.S. Chuang, W. Wang, On-demand dielectrophoretic immobilization and high-resolution imaging of C. elegans in microfluids. Sensor. Actuat. B-Chem 259, 703–708 (2018b)

    Article  Google Scholar 

  • L. Huang, W. Wang, 3D Electro-Rotation of Single Cells. Synthesis Lectures on Biomedical Engineering 14(2) i–119 (2019)

  • D. Jin, B. Deng, J.X. Li, W. Cai, L. Tu, J. Chen, Q. Wu, W.H. Wang, A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics 9(1), 014101 (2015)

    Article  Google Scholar 

  • S. Johari, V. Nock, M.M. Alkaisi, W. Wang, On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip 13(9), 1699 (2013)

    Article  Google Scholar 

  • B.L. Khoo, P.K. Chaudhuri, N. Ramalingam, D.S.W. Tan, C.T. Lim, M.E. Warkiani, Single-cell profiling approaches to probing tumor heterogeneity. Int. J. Cancer 139, 243–255 (2016)

    Article  Google Scholar 

  • H. Kimura, Y. Sakai, T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacok. 33, 43–48 (2018)

    Article  Google Scholar 

  • N.F. Läubli, N. Shamsudhin, D. Ahmed, B.J. Nelson, Controlled three-dimensional rotation of single cells using acoustic waves. Procedia CIRP 65, 93–98 (2017)

    Article  Google Scholar 

  • N.F. Läubli, N. Shamsudhin, H. Vogler, G. Munglani, U. Grossniklaus, D. Ahmed, B.J. Nelson, 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 3, 1800527 (2019)

    Article  Google Scholar 

  • H. Lee, Y. Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid-St. Circ. 41, 1471–1480 (2006)

    Article  Google Scholar 

  • J. Lei, Formation of inverse Chladni patterns in liquids at microscale: Roles of acoustic radiation and streaming-induced drag forces. Microfluid. Nanofluid. 21, 50 (2017)

    Article  Google Scholar 

  • J. Lei, M. Hill, C.P.L. Albarrán, P. Glynne-Jones, Effects of micron scale surface profiles on acoustic streaming. Microfluid. Nanofluid. 22, 140 (2018)

    Article  Google Scholar 

  • S.J. Lighthill, Acoustic streaming. J. Sound Vib. 61, 391–418 (1978)

    Article  MATH  Google Scholar 

  • R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, P. Grodzinski, Bubble-induced acoustic micromixing. Lab Chip 2, 151–157 (2002)

    Article  Google Scholar 

  • W. Liu, Y. Hou, H. Chen, H. Wei, W. Lin, J. Li, M. Zhang, F. He, Y. Jiang, Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies. Proteomics 11, 3556–3564 (2011)

    Article  Google Scholar 

  • L. Mi, L. Huang, J. Li, G. Xu, Q. Wu, W. Wang, A fluidic circuit based, high-efficiency and large-scale single cell trap. Lab Chip 16(23), 4507–4511 (2016)

  • F. Mannello, D. Ligi, M. Magnani, Deciphering the single-cell omic: Innovative application for translational medicine. Expert Rev. Proteomics 9, 635–648 (2012)

    Article  Google Scholar 

  • A. Marin, M. Rossi, B. Rallabandi, C. Wang, S. Hilgenfeldt, C.J. Kähler, Three-dimensional phenomena in microbubble acoustic streaming. Phys. Rev. Appl. 3, 041001 (2015)

    Article  Google Scholar 

  • P. Marmottant, M. Versluis, N.D. Jong, S. Hilgenfeldt, D. Lohse, High-speed imaging of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved acoustic streaming. Exp. Fluids 41, 147–153 (2006)

    Article  Google Scholar 

  • B.A. Merrick, R.E. London, P.R. Bushel, S.F. Grissom, R.S. Paules, Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci. Publ. 121 (2011)

  • S. Mohammadi, V. Ravindra, D.F. Gleich, A. Grama, A geometric approach to characterize the functional identity of single cells. Nat. Commun 9(1516) (2018)

  • M. Ozkan, M. Wang, C. Ozkan, R. Flynn, S. Esener, Optical manipulation of objects and biological cells in microfluidic devices. Biomed. Microdevices 5, 61–67 (2003)

    Article  Google Scholar 

  • P. Pan, W. Wang, R. Changhai, S. Yu, X. Liu, MEMS-based platforms for mechanical manipulation and characterization of cells. J. Micromech. Microeng. 27(12), 123003 (2017)

    Article  Google Scholar 

  • M.V. Patel, I.A. Nanayakkara, M.G. Simon, A.P. Lee, Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab Chip 14, 3860–3872 (2014)

    Article  Google Scholar 

  • T. Paul, M. Richard, O. Andrew, Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191–233 (2007)

    Article  MATH  Google Scholar 

  • V.H. Perez-Gonzalez, R.C. Gallo-Villanueva, S. Camacho-Leon, J.I. Gomez-Quiñones, J.M. Rodriguez-Delgado, S.O. Martinez-Chapa, Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection. IET Nanobiotechnol. 10, 263–275 (2016)

    Article  Google Scholar 

  • Z. Qiu, T. Long, H. Liang, T. Zhu, V. Nock, E. Yu, X. Liu, W. Wang, An integrated platform enabling optogenetic illumination of neurons and muscular force measurement in microstructured environments. Biomicrofluidics 9(1), 014123 (2015)

    Article  Google Scholar 

  • B. Rallabandi, C. Wang, S. Hilgenfeldt, Two-dimensional streaming flows driven by sessile semicylindrical microbubbles. J. Fluid Mech. 739, 57–71 (2014)

    Article  MathSciNet  Google Scholar 

  • M.S. Rocha, O.N. Mesquita, New tools to study biophysical properties of single molecules and single cells. An. Acad. Bras. Ciênc. 79, 17–28 (2007)

    Article  Google Scholar 

  • Q. Tang, P. Liu, J. Hu, Analyses of acoustofluidic field in ultrasonic needle–liquid–substrate system for micro−/nanoscale material concentration. Microfluidics and Nanofluidics 22(46) (2018)

  • M. Tellez-Gabriel, B. Ory, F. Lamoureux, M.F. Heymann, D. Heymann, Tumour heterogeneity: The key advantages of single-cell analysis. Int. J. Mol. Sci. 17, E2142 (2016)

    Article  Google Scholar 

  • R. Thameem, B. Rallabandi, S. Hilgenfeldt, Particle migration and sorting in microbubble streaming flows. Biomicrofluidics 10, 014124 (2016)

    Article  Google Scholar 

  • S. Torino, M. Iodice, I. Rendina, G. Coppola, E. Schonbrun, A microfluidic approach for inducing cell rotation by means of hydrodynamic forces. Sensors 16, 1326 (2016)

    Article  Google Scholar 

  • L. Tu, X. Li, S. Bian, Y. Yu, J. Li, L. Huang, P. Liu, Q Wu, W. Wang, Label-free and real-time monitoring of single cell attachment on template-stripped plasmonic nano-holes. Scientific Reports 7(1) (2017)

  • L. Tu, L. Huang, W. Wang, A novel micromachined Fabry-Perot interferometer integrating nano-holes and dielectrophoresis for enhanced biochemical sensing. Biosensors and Bioelectronics 127, 19–24 (2019)

  • A. Urbansky, P. Ohlsson, A. Lenshof, F. Garofalo, S. Scheding, T. Laurell, Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7, 17161 (2017)

    Article  Google Scholar 

  • M.M. Villone, P. Memmolo, F. Merola, M. Mugnano, L. Miccio, P.L. Maffettone, P. Ferraro, Full-angle tomographic phase microscopy of flowing quasi-spherical cells. Lab Chip 18, 126–131 (2018)

    Article  Google Scholar 

  • D. Wang, S. Bodovitz, Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28, 281–290 (2010)

    Article  Google Scholar 

  • C. Wang, S.V. Jalikop, S. Hilgenfeldt, Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99, 034101 (2011)

    Article  Google Scholar 

  • C. Wang, S.V. Jalikop, S. Hilgenfeldt, Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6, 12801 (2012)

    Article  Google Scholar 

  • C. Wang, B. Rallabandi, S. Hilgenfeldt, Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25, 022002 (2013)

    Article  Google Scholar 

  • K. Wang, X.H. Sun, Y. Zhang, T. Zhang, Y. Zheng, Y.C. Wei, P. Zhao, D.Y. Chen, H.A. Wu, W.H. Wang, R. Long, J.B. Wang, J. Chen, Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. R. Soc. Open Sci. 6(3), 181707 (2019)

    Article  Google Scholar 

  • Y. Xie, D. Ahmed, M.I. Lapsley, S.C.S. Lin, A.A. Nawaz, L. Wang, T.J. Huang, Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer. Anal. Chem. 84, 7495–7501 (2012)

    Article  Google Scholar 

  • Y. Xie, D. Ahmed, M.I. Lapsley, M. Lu, S. Li, T.J. Huang, Acoustofluidic relay: Sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles. J. Lab. Autom. 19, 137–143 (2014)

    Article  Google Scholar 

  • Y. Xie, N. Nama, P. Li, Z. Mao, P.H. Huang, C. Zhao, F. Costanzo, T.J. Huang, Probing cell deformability via acoustically actuated bubbles. Small 12, 902–910 (2016)

    Article  Google Scholar 

  • S. Yazdi, A.M. Ardekani, Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics 6, 044114 (2012)

    Article  Google Scholar 

  • Z.T. Yu, K.M. Aw Yong, J. Fu, Microfluidic blood cell sorting: Now and beyond. Small 10, 1687–1703 (2014)

    Article  Google Scholar 

  • S. Zhang, Z. Ma, Y. Zhang, Y. Wang, Y. Cheng, W. Wang, X. Ye, On-chip immuno-agglutination assay based on a dynamic magnetic bead clump and a sheath-less flow cytometry. Biomicrofluidics 13(4), 044102 (2019)

    Article  Google Scholar 

  • S. Zheng, X. Wang, D. Ma, A convenient 3D reconstruction method of small objects. Geomatics and Information Science of Wuhan University 40, 147–152 (2015)

    Google Scholar 

  • R. Zhou, C. Wang, Acoustic bubble enhanced pinched flow fractionation for microparticle separation. J. Micromech. Microeng. 25, 084005 (2015)

    Article  MathSciNet  Google Scholar 

  • Q. Zhu, M. Heon, Z. Zhao, M. He, Microfluidic engineering of exosomes: Editing cellular messages for precision therapeutics. Lab Chip 18, 1690–1703 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (no. 61774095, 21727813, 11904117), and the National Key R&D Program (no. 2016YFC0900200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 88.3 kb)

ESM 2

(AVI 1628 kb)

ESM 3

(AVI 2070 kb)

EM 4 (AVI 545 kb)

ESM 5

(AVI 353 kb)

ESM 6

(AVI 1755 kb)

ESM 7

(AVI 2541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Liang, F., Huang, L. et al. On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed Microdevices 22, 13 (2020). https://doi.org/10.1007/s10544-020-0470-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-0470-1

Keywords

Navigation