Skip to main content

Advertisement

Log in

A tissue chamber chip for assessing nanoparticle mobility in the extravascular space

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a ‘Tissue Chamber’ chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 μm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • B. Annabi, S. Thibeault, R. Moumdjian, R. Béliveau, J. Biol. Chem. 279, 21888 (2004)

    Article  Google Scholar 

  • A.C. Anselmo, J.B. Gilbert, S. Kumar, V. Gupta, R.E. Cohen, M.F. Rubner, S. Mitragotri, J. Control. Release 199, 29 (2015)

    Article  Google Scholar 

  • J.K. Armstrong, R.B. Wenby, H.J. Meiselman, T.C. Fisher, Biophys. J. 87, 4259 (2004)

    Article  Google Scholar 

  • A.G. Arranja, V. Pathak, T. Lammers, Y. Shi, Pharmacol. Res. 115, 87 (2017)

    Article  Google Scholar 

  • E. Blanco, T. Sangai, S. Wu, A. Hsiao, G.U. Ruiz-Esparza, C.A. Gonzalez-Delgado, F.E. Cara, S. Granados-Principal, K.W. Evans, A. Akcakanat, Y. Wang, K.A. Do, F. Meric-Bernstam, M. Ferrari, Mol. Ther. 22, 1310 (2014)

    Article  Google Scholar 

  • E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 33, 941 (2015)

    Article  Google Scholar 

  • J.S. Brenner, D.C. Pan, J.W. Myerson, O.A. Marcos-Contreras, C.H. Villa, P. Patel, H. Hekierski, S. Chatterjee, J.-Q. Tao, H. Parhiz, K. Bhamidipati, T.G. Uhler, E.D. Hood, R.Y. Kiseleva, V.S. Shuvaev, T. Shuvaeva, M. Khoshnejad, I. Johnston, J.V. Gregory, J. Lahann, T. Wang, E. Cantu, W.M. Armstead, S. Mitragotri, V. Muzykantov, Nat. Commun. 9, 2684 (2018)

    Article  Google Scholar 

  • H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Tereda, M.R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat. Nanotechnol. 6, 815 (2011)

    Article  Google Scholar 

  • M.-R. Choi, R. Bardhan, K.J. Stanton-Maxey, S. Badve, H. Nakshatri, K.M. Stantz, N. Cao, N.J. Halas, S.E. Clare, Cancer Nanotechnol. 3, 47 (2012)

    Article  Google Scholar 

  • Y. Cu, W.M. Saltzman, Mol. Pharm. 6, 173 (2009)

    Article  Google Scholar 

  • J.G. Dancy, A.S. Wadajkar, C.S. Schneider, J.R.H. Mauban, O.G. Goloubeva, G.F. Woodworth, J.A. Winkles, A.J. Kim, J. Control. Release 238, 139 (2016)

    Article  Google Scholar 

  • A. Erikson, H.N. Andersen, S.N. Naess, P. Sikorski, C.d.L. Davies, Biopolymers 89, 135 (2008)

    Article  Google Scholar 

  • S. Essa, J.M. Rabanel, P. Hildgen, Int. J. Pharm. 411, 178 (2011)

    Article  Google Scholar 

  • M. Ferrari, Nat. Rev. Cancer 5, 161 (2005)

    Article  Google Scholar 

  • R.A. Gelman, J. Blackwell, Biochim. Biophys. Acta 342, 254 (1974)

    Article  Google Scholar 

  • C.-M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Proc. Natl. Acad. Sci. 108, 10980 (2011)

    Article  Google Scholar 

  • S. Hua, M.B.C. de Matos, J.M. Metselaar, G. Storm, Front. Pharmacol. 9, 790 (2018)

    Article  Google Scholar 

  • R. Kedmi, N. Ben-Arie, D. Peer, Biomaterials 31, 6867 (2010)

    Article  Google Scholar 

  • H.I. Labouta, M.J. Gomez-Garcia, C.D. Sarsons, T. Nguyen, J. Kennard, W. Ngo, K. Terefe, N. Iragorri, P. Lai, K.D. Rinker, D. Cramb, RSC Adv. 8, 7697 (2018)

    Article  Google Scholar 

  • D. Landesman-Milo, M. Goldsmith, S. Leviatan-Ben-Arye, B. Witenberg, E. Brown, S. Leibovitch, S. Azriel, S. Tabak, V. Morad, D. Peer, Cancer Lett. 334, 221 (2013)

    Article  Google Scholar 

  • J. Lazarovits, Y.Y. Chen, E.A. Sykes, W.C.W. Chan, Chem. Commun. 51, 2756 (2015)

    Article  Google Scholar 

  • A. Lee, D. di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi, Nanomed.: Nanotechnol. Biol. Med. 12, 2139 (2016)

    Article  Google Scholar 

  • C.A. McDevitt, J. Marcelino, L. Tucker, FEBS Lett. 294, 167 (1991)

    Article  Google Scholar 

  • S. Mizrahy, S.R. Raz, M. Hasgaard, H. Liu, N. Soffer-Tsur, K. Cohen, R. Dvash, D. Landsman-Milo, M.G.E.G. Bremer, S.M. Moghimi, D. Peer, J. Control. Release 156, 231 (2011)

    Article  Google Scholar 

  • S. Mizrahy, M. Goldsmith, S. Leviatan-Ben-Arye, E. Kisin-Finfer, O. Redy, S. Srinivasan, D. Shabat, B. Godin, D. Peer, Nanoscale 6, 3742 (2014)

    Article  Google Scholar 

  • T.L. Moore, H. Chen, R. Morrison, F. Wang, J.N. Anker, F. Alexis, Mol. Pharm. 11, 24 (2014)

    Article  Google Scholar 

  • T.L. Moore, D. Hauser, T. Gruber, B. Rothen-Rutishauser, M. Lattuada, A. Petri-Fink, R. Lyck, ACS Appl. Mater. Interfaces 9, 18501 (2017)

    Article  Google Scholar 

  • G. Nabil, K. Bhise, S. Sau, M. Atef, H.A. El-Banna, A. Iyer, Drug Discov. Today 24, 462 (2019)

    Article  Google Scholar 

  • D. Peer, R. Margalit, Arch. Biochem. Biophys. 383, 185 (2000)

    Article  Google Scholar 

  • D. Peer, R. Margalit, Int. J. Cancer 108, 780 (2004)

    Article  Google Scholar 

  • D. Peer, E.J. Park, Y. Morishita, C.V. Carman, M. Shimaoka, Science 319, 627 (2008)

    Article  Google Scholar 

  • A. Pitchaimani, T.D.T. Nguyen, R. Marasini, A. Eliyapura, T. Azizi, M. Jaberi-Douraki, S. Aryal, Adv. Funct. Mater. 29, 1806817 (2019)

    Article  Google Scholar 

  • R. Pushpalatha, S. Selvamuthukumar, D. Kilimozhi, J. Drug Delivery Sci. Technol. 39, 362 (2017)

    Article  Google Scholar 

  • D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Nat. Commun. 9, 1410 (2018)

    Article  Google Scholar 

  • G. Sancataldo, L. Scipioni, T. Ravasenga, L. Lanzanò, A. Diaspro, A. Barberis, M. Duocastella, Optica 4, 367 (2017)

    Article  Google Scholar 

  • J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9, 676 (2012)

    Article  Google Scholar 

  • J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Nat. Rev. Cancer 17, 20 (2017)

    Article  Google Scholar 

  • A. Sontheimer-Phelps, B.A. Hassell, D.E. Ingber, Nat. Rev. Cancer 19, 65 (2019)

    Article  Google Scholar 

  • C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi, Adv. Funct. Mater. 25, 3371 (2015)

    Article  Google Scholar 

  • T. Stylianopoulos, M.-Z. Poh, N. Insin, M.G. Bawendi, D. Fukumara, L.L. Munn, R.K. Jain, Biophys. J. 99, 1342 (2010)

    Article  Google Scholar 

  • E. Syková, C. Nicholson, Physiol. Rev. 88, 1277 (2008)

    Article  Google Scholar 

  • E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M.-C. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Nat. Nanotechnol. 3, 151 (2008)

    Article  Google Scholar 

  • R.G. Thorne, C. Nicholson, Proc. Natl. Acad. Sci. 103, 5567 (2006)

    Article  Google Scholar 

  • G.T. Tietjen, L.G. Bracaglia, W.M. Saltzman, J.S. Pober, Trends Mol. Med. 24, 598 (2018)

    Article  Google Scholar 

  • J.-Y. Tinevez, N. Perry, J. Schindelin, G.M. Hoopes, G.D. Reynolds, E. Laplantine, S.Y. Bednarek, S.L. Shorte, K.W. Eliceiri, Methods 115, 80 (2017)

    Article  Google Scholar 

  • F. Tröltzsch, Optimal control of partial differential equations, vol. 112 (Graduate Studies in Mathematics, 2010)

  • M.T. Valentine, Z. E: Perlman, M.L. Gardel, J.H. Shin, P. Matsudaira, T.J. Mitchison, D.A. Weitz, Biophys. J. 86, 4004 (2004)

    Article  Google Scholar 

  • S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Nat. Rev. Mater. 1, 16014 (2016)

    Article  Google Scholar 

  • J. Wolfram, K. Suri, Y. Yang, J. Shen, C. Celia, M. Fresta, Y. Zhao, H. Shen, M. Ferrari, Colloid Surf. B Biointerfaces 114, 294 (2014)

    Article  Google Scholar 

  • C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popović, R.K. Jain, M.G. Bawendi, D. Fukumura, Proc. Natl. Acad. Sci. 108, 2426 (2011)

    Article  Google Scholar 

  • M. Xavier, Phys. Rev. E82, 041914 (2010)

    Google Scholar 

  • Q. Xu, L.M. Ensign, N.J. Boylan, A. Schön, X. Gong, J.-C. Yang, N.W. Lamb, S. Cai, T. Yu, E. Freire, J. Hanes, ACS Nano 9, 9217 (2015)

    Article  Google Scholar 

  • C. Zhang, E.A. Nance, P. Mastorakos, J. Chisholm, S. Berry, C. Eberhart, B. Tyler, H. Brem, J.S. Suk, J. Hanes, J. Control. Release 263, 112 (2017)

    Article  Google Scholar 

  • W. Zhang, M. Wang, W. Tang, R. Wen, S. Zhou, C. Lee, H. Wang, W. Jiang, I.M. Delahunty, Z. Zhen, H. Chen, M. Chapman, Z. Wu, E.W. Howerth, H. Cai, Z. Li, J. Xie, Adv. Mater. 30, 1805557 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

All the authors have read and approved the manuscript. This project was partially supported by the European Research Council, under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 616695, by the Italian Association for Cancer Research (AIRC) under the individual investigator grant no. 17664, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Decuzzi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(M 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lusi, V., Moore, T.L., Laurino, F. et al. A tissue chamber chip for assessing nanoparticle mobility in the extravascular space. Biomed Microdevices 21, 41 (2019). https://doi.org/10.1007/s10544-019-0398-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0398-5

Keywords

Navigation