Skip to main content
Log in

The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) has been the pivotal materials for microfluidic technologies with tremendous amount of lab-on-a-chip devices made of PDMS microchannels. While molding-based soft-lithography approach has been extremely successful in preparing various PDMS constructs, some complex features have to been achieved through more complicated microfabrication techniques that involve dry etching of PDMS. Several recipes have been reported for reactive ion etching (RIE) of PDMS; however, the etch rates present large variations, even for the same etching recipe, which poses challenges in adopting this process for device fabrication. Through systematic characterization of the Young’s modulus of PDMS films and RIE etch rate, we show that the etch rate is closely related to the polymer cross-link density in the PDMS with a higher etch rate for a lower PDMS Young’s modulus. Our results could provide guidance to the fabrication of microfluidic devices involving dry etching of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Anal. Chem. 72, 3158 (2000)

    Article  Google Scholar 

  • D. Armani, C. Liu, N. Aluru, IEEE International MEMS '99 Twelfth IEEE International Conference on Micro Electro Mechanical Systems. (1999)

  • W. Chen, R.H. Lam, J. Fu, Lab Chip 12, 391 (2012)

    Article  Google Scholar 

  • S.P. Desai, D.M. Freeman, J. Voldman, Lab Chip 9, 1631 (2009)

    Article  Google Scholar 

  • K.H. Dodson, F.D. Echevarria, D. Li, R.M. Sappington, J.F. Edd, Biomed. Microdevices 17, 114 (2015)

    Article  Google Scholar 

  • D.T. Eddington, W.C. Crone, D.J. Beebe, 7th international conference on miniaturized chemical and Biochem. Analysis Systems (2003)

  • A. Folch, M. Toner, Biotechnol. Progress. 14, 388 (1998)

    Article  Google Scholar 

  • D. Fragiadakis, P. Pissis, J. Non-Cryst. Solids 353, 4344 (2007)

    Article  Google Scholar 

  • J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films. 20, 975 (2002)

    Article  Google Scholar 

  • B. Gorissen, C. Van Hoof, D. Reynaerts, M. De Volder, Microsyst. Nanoeng. 2, 16045 (2016)

    Article  Google Scholar 

  • S.J. Hwang, D.J. Oh, P.G. Jung, S.M. Lee, J.S. Go, J.H. Kim, K.Y. Hwang, J.S. Ko, J. Micromech. Microeng. 19, 095010 (2009)

    Article  Google Scholar 

  • H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, J. Micromech. Microeng. 6, 14 (1996)

    Article  Google Scholar 

  • B.H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, J. Microelectromech. Syst. 9, 76 (2000)

    Article  Google Scholar 

  • I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 035017 (2014)

    Article  Google Scholar 

  • J.M. Kim, F. Wolf, S.K. Baier, Tribol. Int. 89, 46 (2015)

    Article  Google Scholar 

  • H.K. Lee, S.I. Chang, E. Yoon, J. Microelectromech. Syst. 15, 1681 (2006)

    Article  Google Scholar 

  • A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdevices 7, 281 (2005)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002)

    Article  Google Scholar 

  • L.D. Nielsen, J. Macromol. Sci. 3, 69 (1969). https://doi.org/10.1080/15583726908545897

    Article  Google Scholar 

  • S.R. Oh, J. Micromech. Microeng. 18, 115025 (2008)

    Article  Google Scholar 

  • D. Szmigiel, K. Domański, P. Prokaryn, P. Grabiec, Microelectron. Eng. 83, 1178 (2006)

    Article  Google Scholar 

  • D. Szmigiel, C. Hibert, A. Bertsch, E. Pamuła, K. Domański, P. Grabiec, P. Prokaryn, A. Ścisłowska-Czarnecka, B. Płytycz, Plasma Process. Polym. 5, 246 (2008)

    Article  Google Scholar 

  • M.E. Vlachopoulou, A. Tserepi, N. Vourdas, E. Gogolides, K. Misiakos, J. Phys.: Conference Series. 10, 293 (2005)

    Google Scholar 

  • M.E. Vlachopoulou, G. Kokkoris, C. Cardinaud, E. Gogolides, A. Tserepi, Plasma Process. Polym. 10, 29 (2013)

    Article  Google Scholar 

  • E.J. Wong, Doctoral dissertation. Massachusetts Institute of Technology. (2010)

  • Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)

    Article  Google Scholar 

  • L. Yang, T. Hong, Y. Zhang, J.G.S. Arriola, B.L. Nelms, R. Mu, D. Li, Biomed. Microdevices 19, 38 (2017)

    Article  Google Scholar 

  • R.J. Young, P.A. Lovell, Introduction to Polymers, 2nd edn. (Nelson Thornes, Cheltenham, 2002), p. 310

    Google Scholar 

Download references

Acknowledgements

M.F. and D.L. acknowledge a helpful discussion with Dr. Godfrey Saudi. The authors acknowledge the financial support from the National Institutes of Health (Grants Number: 1R21EY026176, 1R01 EY027729), and from National Aeronautics and Space Administration (Grant Number: 80NSSC18K1165), which is a fellowship award to Matthew Fitzgerald under the NASA Space Technology Research Fellowships program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzgerald, M.L., Tsai, S., Bellan, L.M. et al. The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS). Biomed Microdevices 21, 26 (2019). https://doi.org/10.1007/s10544-019-0379-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0379-8

Keywords

Navigation