Skip to main content

Advertisement

Log in

Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell–cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M.A. Abdul Razak, K.F. Hoettges, H.O. Fatoyinbo, F.H. Labeed, M.P. Hughes, Biomicrofluidics 7, 064110 (2013)

    Article  Google Scholar 

  • Y. Abe, K. Nagamine, M. Nakabayashi, H. Kai, H. Kaji, T. Yamauchi, K. Yamasaki, M. Nishizawa, Biomed. Microdevices 18, 55 (2016)

    Article  Google Scholar 

  • A.K. Adya, E. Canetta, G.M. Walker, FEMS Yeast Res. 6, 120 (2006)

    Article  Google Scholar 

  • B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, J. Wilson, T. Hunt, Molecular Biology of the Cell (Garland Science, New York, 2008)

  • A. Andryieuski, S.M. Kuznetsova, S.V. Zhukovsky, Y.S. Kivshar, A.V. Lavrinenko, Sci. Rep. 5, 13535 (2015)

  • P. Benhal, J.G. Chase, P. Gaynor, B. Oback, W. Wang, Lab Chip 14, 2717 (2014)

    Article  Google Scholar 

  • H. Berg, in Mod. Bioelectr., ed. by A.A. Marino (CRC Press, New York, 1988), p. 269

  • M. Birle, C. Leu, in 18th Int. Symp. High Volt. Eng (Seoul, 2013), p. 1025

  • D. Botstein, G.R. Fink, Genetics 189, 695 (2011)

    Article  Google Scholar 

  • S. Burgarella, M. Di Bari, B. Sarah, B.M. Di, Electrophoresis 36, 1466 (2015)

    Article  Google Scholar 

  • A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, J. Phys. D. Appl. Phys. 36, 2584 (2003)

    Article  Google Scholar 

  • B. Çetin, D. Li, Electrophoresis 32, 2410 (2011)

    Article  Google Scholar 

  • B. Çetin, M.B. Özer, M.E. Solmaz, Biochem. Eng. J. 92, 63 (2014)

    Article  Google Scholar 

  • H.K. Chu, Z. Huan, J.K. Mills, J. Yang, D. Sun, in IEEE Int. Conf. Intell. Robot. Syst. (Chicago, 2014), p. 2003

  • J. Coffel, E. Nuxoll, Int. J. Pharm. 544, 335 (2018)

    Article  Google Scholar 

  • F. Dal Dosso, T. Kokalj, J. Belotserkovsky, D. Spasic, J. Lammertyn, Biomed. Microdevices 20, 44 (2018)

  • D.S. Dimitrov, in Handb. Biol. Phys., ed. by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1995), p. 851

  • H. Ding, J. Shao, Y. Ding, W. Liu, X. Li, H. Tian, Y. Zhou, Appl. Surf. Sci. 330, 178 (2015)

    Article  Google Scholar 

  • L. Doh-Hyoung, Y. Chengjie, P. Elisabeth, F. Bakhtier, N.H. M, Electrophoresis 32, 2298 (2011)

    Google Scholar 

  • V.A. Evans, N. Kumar, A. Filali, F.A. Procopio, O. Yegorov, J.P. Goulet, S. Saleh, E.K. Haddad, C. da Fonseca Pereira, P.C. Ellenberg, R.P. Sekaly, P.U. Cameron, S.R. Lewin, PLoS Pathog. 9, e1003799 (2013)

  • R.E. Fernandez, B.J. Sanghavi, V. Farmehini, J.L. Chávez, J. Hagen, N. Kelley-Loughnane, C.-F. Chou, N.S. Swami, Electrochem. Commun. 72, 144 (2016)

    Article  Google Scholar 

  • M. Ferrari, BioMEMS and Biomedical Nanotechnology (Springer, Boston, 2007)

    Book  Google Scholar 

  • N. García, E. Benito, P. Tiemblo, M.M.B. Hasan, A. Synytska, M. Stamm, Soft Matter 6, 4768 (2010)

    Article  Google Scholar 

  • M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, Biomicrofluidics 4, 022808 (2010)

    Article  Google Scholar 

  • J.W. Gooch, in Encycl. Dict. Polym., ed. by J. W. Gooch (Springer, New York, 2011), p. 213 

  • N. Gopalakrishnan, R. Hannam, G.P. Casoni, D. Barriet, J.M. Ribe, M. Haug, O. Halaas, Lab Chip 15, 1481 (2015)

    Article  Google Scholar 

  • L. He, J. Huang, N. Perrimon, Proc. Natl. Acad. Sci. 114, 5467 (2017)

  • N. Hu, J. Yang, S. Qian, S.W. Joo, X. Zheng, Biomicrofluidics 5, 34121 (2011)

    Article  Google Scholar 

  • N. Hu, J. Yang, S.W. Joo, A.N. Banerjee, S. Qian, Sensors Actuators B Chem. 178, 63 (2013)

  • M. Iwamoto, in Encycl. Nanotechnol., ed. by B. Bhushan (Springer, Dordrecht, 2012), p. 1276

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge; New York, 1995)

    Book  Google Scholar 

  • S. Kakaç, Microfluidics Based Microsystems Fundamentals and Applications (Springer, Dordrecht, 2010)

    Book  Google Scholar 

  • M. Kandušer, D. Miklavčič, in Electrotechnol. Extr. From Food Plants Biomater., ed. by E. Vorobiev and N. Lebovka (Springer, New York, 2008), p. 1

  • A.A. Kayani, K. Khoshmanesh, T.G. Nguyen, G. Kostovski, A.F. Chrimes, M. Nasabi, D.A. Heller, A. Mitchell, K. Kalantar-zadeh, Electrophoresis 33, 2075 (2012a)

    Article  Google Scholar 

  • A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012b)

  • E.W.M. Kemna, F. Wolbers, I. Vermes, A. van den Berg, Electrophoresis 32, 3138 (2011)

    Article  Google Scholar 

  • J.C. Krebs, Y. Alapan, B.A. Dennstedt, G.D. Wera, U.A. Gurkan, Biomed. Microdevices 19, 20 (2017)

  • J. Li, X. Yu, T.E. Wagner, Y. Wei, Oncol. Lett. 8, 198 (2014)

    Article  Google Scholar 

  • J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook (Dover Publications, New York, 2011)

  • A.P. Liu, O. Chaudhuri, S.H. Parekh, Integr. Biol. 9, 383 (2017)

    Article  Google Scholar 

  • A. Longo, A. Baraket, M. Vatteroni, N. Zine, J. Baussells, RogerFuoco, F. Di Francesco, G.S. Karanasiou, D.I. Fotiadis, A. Menciassi, A. Errachid, Procedia Eng. 168, 97 (2016)

  • X. Luo, J.J. He, J. Neuro-Oncol. 21, 66 (2015)

    Google Scholar 

  • M.A. Md Ali, K. (Ken) Ostrikov, F.A. Khalid, B.Y. Majlis, A.A. Kayani, RSC Adv. 6, 113066 (2016)

  • M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation (Elsevier, Amsterdam; Boston, 2010)

    Google Scholar 

  • K. Menon, R.A. Joy, N. Sood, R.K. Mittal, Bionanoscience 3, 356 (2013)

    Article  Google Scholar 

  • H. Morgan, N. Green, in Encycl. Microfluid. Nanofluidics, ed. by D. Li (Springer, New York, 2015), p. 563

  • O.T. Nedelcu, Rom. J. Inf. Sci. Technol. 14, 309 (2011)

    Google Scholar 

  • E. Neumann, A.E. Sowers, C.A. Jordan, Electroporation and Electrofusion in Cell Biology (Plenum Press, New York, 1989)

    Book  Google Scholar 

  • J.A. Nickoloff, Animal Cell Electroporation and Electrofusion Protocols (Humana Press, Totowa, 1995)

    Google Scholar 

  • S. Nishimura, H. Matsumura, K. Kosuge, T. Yamaguchi, Langmuir 26, 10357 (2010)

    Article  Google Scholar 

  • J. L. Nitiss, J. Heitman, Yeast as a Tool in Cancer Research (Springer, Dordrecht, 2007)

  • E. Nuxoll, Adv. Drug Deliv. Rev. 65, 1611 (2013)

    Article  Google Scholar 

  • B.M. Ogle, M. Cascalho, J.L. Platt, Nat Rev Mol Cell Biol 6, 567 (2005)

    Article  Google Scholar 

  • A. Otsuki, T. Sagawa, in Chemeca 2010 Eng. Edge (South Australia, 2010), p. 2568

  • D.T. Pathak, X. Wei, A. Bucuvalas, D.H. Haft, D.L. Gerloff, D. Wall, PLoS Genet. 8, 1 (2012)

    Article  Google Scholar 

  • R. Pethig, Biomicrofluidics 4, 022811 (2010)

  • R. Pethig, Y. Huang, X. Wang, J.P.H. Burt, J. Phys. D. Appl. Phys. 25, 881 (1992)

  • P. Piyasena, C. Dussault, T. Koutchma, H.S. Ramaswamy, G.B. Awuah, Crit. Rev. Food Sci. Nutr. 43, 587 (2003)

    Article  Google Scholar 

  • R. Plonsey, R.C. Barr, Bioelectricity (Springer, Boston, 2007)

  • H.A. Pohl, Dielectrophoresis : The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Int. J. Mol. Sci. 15, 18281 (2014)

    Article  Google Scholar 

  • A. Ramos, Electrokinetics and Electrohydrodynamics in Microsystems (Springer, New York, 2011)

    Book  Google Scholar 

  • A. Ramos, H. Morgan, N.G. Green, A. Castellanos, J. Phys. D. Appl. Phys. 31, 2338 (1998)

    Article  Google Scholar 

  • L. Rems, M. Ušaj, M. Kandušer, M. Reberšek, D. Miklavčič, G. Pucihar, Sci. Rep. 3, 3382 (2013)

    Article  Google Scholar 

  • T. Robinson, P.E. Verboket, K. Eyer, P.S. Dittrich, Lab Chip 14, 2852 (2014)

    Article  Google Scholar 

  • B. Salim, M.V. Athira, A. Kandaswamy, M. Vijayakumar, T. Saravanan, T. Sairam, Biomed. Microdevices 19, 89 (2017)

  • J. Schaper, Development of a Technology for Arranged Electrofusion of Mammalian Cells: Applicability in Breast Cancer Immunotherapy, Bielefeld University, 2007

  • F.I. Schmidt, P. Kuhn, T. Robinson, J. Mercer, P.S. Dittrich, Biophys. J. 105, 420 (2013)

    Article  Google Scholar 

  • R.M. Schoeman, E.W.M. Kemna, F. Wolbers, A. van den Berg, Electrophoresis 35, 385 (2014)

    Article  Google Scholar 

  • M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T. Matsue, Lab Chip 13, 3650 (2013)

    Article  Google Scholar 

  • B. Shaparenko, The Thermal Dielectrophoretic Force on a Dielectric Particle in Electric and Temperature, University of Pennsylvania, 2015

  • Q. Shi, J. Wang, D. Chen, J. Chen, J. Li, K. Bao, Biomed. Microdevices 16, 859 (2014)

    Article  Google Scholar 

  • A.V. Shutko, V.S. Gorbunov, K.G. Guria, K.I. Agladze, Biomed. Microdevices 19, 72 (2017)

  • M.G. Smith, M. Snyder, in Curr. Protoc. Hum. Genet. (Wiley, New York, 2001), p. 15.6.1

  • R. Soffe, S.-Y. Tang, S. Baratchi, S. Nahavandi, M. Nasabi, J.M. Cooper, A. Mitchell, K. Khoshmanesh, Anal. Chem. 87, 2389 (2015)

  • R. Soltanzadeh, E. Afsharipour, C. Shafai, N. Anssari, B. Mansouri, Z. Moussavi, Biomed. Microdevices 20, 1 (2017)

  • G. Stéphane, F. Eric, G. Patrick, Biotechnol. Bioeng. 92, 403 (2005)

    Article  Google Scholar 

  • W.-H. Tan, S. Takeuchi, Lab Chip 6, 757 (2006)

    Article  Google Scholar 

  • J. Tesarik, Z.P. Nagy, C. Mendoza, E. Greco, Hum. Reprod. 15, 1149 (2000)

    Article  Google Scholar 

  • G. Tresset, S. Takeuchi, Biomed. Microdevices 6, 213 (2004)

    Article  Google Scholar 

  • A. Troiano, E. Pasero, L. Mesin, in New Adv. Veh. Technol. Automot. Eng., ed. by J. P. Carmo and J. E. Ribeiro (IntechOpen, Rijeka, 2012), p. 231

  • H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L. Wang, H.-Y. Lin, Sensors Actuators B Chem. 144, 407 (2010)

    Article  Google Scholar 

  • M. Usaj, K. Flisar, D. Miklavcic, M. Kanduser, Bioelectrochemistry 89, 34 (2013)

    Article  Google Scholar 

  • N. Van Pham, J. Villemejane, F. Hamdi, G. Mottet, C. Dalmay, M. Woytasik, E. Martincic, E. Dufour-Gergam, O. Français, L.M. Mir, B. Le Pioufle, Procedia Eng. 5, 49 (2010)

    Article  Google Scholar 

  • M. Verduyckt, H. Vignaud, T. Bynens, J. Van den Brande, V. Franssens, C. Cullin, J. Winderickx, in Syst. Biol. Alzheimer’s Dis., ed. by J. I. Castrillo and S. G. Oliver (Springer, New York, 2016), p. 197

  • J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006)

    Article  Google Scholar 

  • T. Wasilewski, J. Gębicki, W. Kamysz, Sensors Actuators B Chem. 257, 511 (2018)

    Article  Google Scholar 

  • J. Wu, Y. Ben, D. Battigelli, H.C. Chang, Ind. Eng. Chem. Res. 44, 2815 (2005)

    Article  Google Scholar 

  • W. Wu, Y. Qu, N. Hu, Y. Zeng, J. Yang, H. Xu, Z.Q. Yin, PLoS One 10, 1 (2015)

    Google Scholar 

  • L. Xiong, Y. Yan, M. Jiahao, Z. Yanhang, W. Qian, Z. Zhaohua, R. Tianling, J. Semicond. 36, 64009 (2015)

  • S. Yan, Y. Zhu, S.-Y. Tang, Y. Li, Q. Zhao, D. Yuan, G. Yun, J. Zhang, S. Zhang, W. Li, Electrophoresis 39, 957 (2018)

    Article  Google Scholar 

  • J. Yang, M. H. Shen, in Nucl. Reprogramming Methods Protoc., ed. by S. Pells (Humana Press, Totowa, 2006), p. 59

  • L. Yang, T. Hong, Y. Zhang, J.G.S. Arriola, B.L. Nelms, R. Mu, D. Li, Biomed. Microdevices 19, 38 (2017)

    Article  Google Scholar 

  • S. Youssefian, N. Rahbar, C.R. Lambert, S. Van Dessel, J. R. Soc. Interface 14, 20170127 (2017)

    Article  Google Scholar 

  • X. Zhang, Z. Zhu, Z. Ni, N. Xiang, H. Yi, Biomed. Microdevices 19, 21 (2017)

    Article  Google Scholar 

  • K. Zhu, A.S. Kaprelyants, E.G. Salina, G.H. Markx, Biomicrofluidics 4, 022809 (2010)

    Article  Google Scholar 

  • U. Zimmermann, Biochim. Biophys. Acta - Rev. Biomembr 694, 227 (1982)

    Article  Google Scholar 

  • U. Zimmermann, in Methods Hybrid Form, ed. by A. H. Bartal and Y. Hirshaut (Humana Press, Totowa, 1987), p. 97

Download references

Acknowledgements

We thank the Ministry of Higher Education of Malaysia (MOHE) for support under Fundamental Research Grant Scheme (FRGS) FRGS/2/2013/TK03/UKM/01/1 and FRGS/1/2015/TK04/MMU/02/9 and the Ministry of Education of Malaysia (MOE) for support under the Higher Institution Centre of Excellence (HiCOE) Grant, AKU-95. Dr. Adam Chrimes acknowledges the support of the Victorian Government through the 2015 Victorian Postdoctoral Research Fellowship program. Professor Leslie Yeo is grateful to the Australian Research Council for a Future Fellowship (FT130100672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminuddin Bin Ahmad Kayani.

Electronic supplementary material

Online Resource 1

(DOCX 4.46 mb)

Online Resource 2

(MPG 3340 kb)

Online Resource 3

(MPG 3517 kb)

Online Resource 4

(MPG 5698 kb)

Online Resource 5

(MPG 3760 kb)

Online Resource 6

(MPG 4112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Md Ali, M.A., Kayani, A.B.A., Yeo, L.Y. et al. Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomed Microdevices 20, 95 (2018). https://doi.org/10.1007/s10544-018-0341-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0341-1

Keywords

Navigation