Skip to main content
Log in

Construction of 3D multicellular microfluidic chip for an in vitro skin model

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • H.E. Abaci, K. Gledhill, Z. Guo, A.M. Christiano, M.L. Shuler, Lab. Chip. 15 (2015)

  • H.E. Abaci, Z. Guo, A. Coffman, B. Gillette, W.H. Lee, S.K. Sia, A.M. Christiano, Adv. Healthc. Mater. 5 (2016)

  • M. Allison, Nat. Biotechnol. 30 (2012)

  • F. Andriani, A. Margulis, N. Lin, S. Griffey, J.A. Garlick, J. Invest. Dermatol. 120 (2003)

  • B. Atac, I. Wagner, R. Horland, R. Lauster, U. Marx, A.G. Tonevitsky, R.P. Azar, G. Lindner, Lab. Chip. 13 (2013)

  • B.M. Baker, B. Trappmann, S.C. Stapleton, E. Toro, C.S. Chen, Lab. Chip. 13 (2013)

  • S.A. Bencherif, T.M. Braschler, P. Renaud, J. Periodontal. Implant. Sci. 43 (2013)

  • E. Berthier, E.W. Young, D. Beebe, Lab. Chip. 12 (2012)

  • S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32 (2014)

  • L.L. Bischel, E.W. Young, B.R. Mader, D.J. Beebe, Biomaterials. 34 (2013)

  • I. Canton, D.M. Cole, E.H. Kemp, P.F. Watson, J. Chunthapong, A.J. Ryan, S. MacNeil, J.W. Haycock, Biotechnol. Bioeng. 106 (2010)

  • M.W. Carlson, A. Alt-Holland, C. Egles, J.A. Garlick, Three-dimensional tissue models of normal and diseased skin. Curr. Protoc. Cell. Biol. Chapter 19, Unit 19.9. (2008). doi:10.1002/0471143030.cb1909s41

  • D.Y. Chau, C. Johnson, S. MacNeil, J.W. Haycock, A.M. Ghaemmaghami, Biofabrication. 5 (2013)

  • K.M. Chrobak, D.R. Potter, J. Tien, Microvasc. Res. 71 (2006)

  • S.E. Cisewski, L. Zhang, J. Kuo, G.J. Wright, Y. Wu, M.J. Kern, H. Yao, Osteoarthr. Cartil. 23 (2015)

  • W.P. Daley, K.M. Yamada, Curr. Opin. Genet. Dev. 23 (2013)

  • B. Deorosan, E.A. Nauman, Stem Cells Int. 2011 (2011)

  • J. D'Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott, Int. J. Mol. Sci. 14 (2013)

  • M. Eastwood, R. Porter, U. Khan, G. McGrouther, R. Brown, J. Cell. Physiol. 166 (1996)

  • K. Funamoto, I.K. Zervantonakis, Y. Liu, C.J. Ochs, C. Kim, R.D. Kamm, Lab. Chip. 12 (2012)

  • D.M. Himmelblau, J.B. Riggs, Basic principles and calculations in chemical engineering, 7th edition, chapter 19. Upper Saddle River, Prentice Hall (2012)

  • E. Hoch, G.E. Tovar, K. Borchers, Eur. J. Cardiothorac. Surg. 46 (2014)

  • K. Hu, H. Shi, J. Zhu, D. Deng, G. Zhou, W. Zhang, Y. Cao, W. Liu, Biomed. Microdevices. 12 (2010)

  • S.H. Kim, J.W. Lee, I. Choi, Y.C. Kim, J.B. Lee, J.H. Sung, J. Nanosci. Nanotechnol. 13 (2013a)

  • S. Kim, H. Lee, M. Chung, N.L. Jeon, Lab. Chip. 13 (2013b)

  • D.Y. Lee, K.H. Cho, Arch. Dermatol. Res. 296 (2005)

  • D.Y. Lee, H.T. Ahn, K.H. Cho, J. Dermatol. Sci. 23 (2000)

  • W. Lee, V. Lee, S. Polio, P. Keegan, J.H. Lee, K. Fischer, J.K. Park, S.S. Yoo, Biotechnol. Bioeng. 105 (2010)

  • V. Lee, G. Singh, J.P. Trasatti, C. Bjornsson, X. Xu, T.N. Tran, S.S. Yoo, G. Dai, P. Karande, Tissue. Eng. Part C. Methods. 20 (2014)

  • H. Lee, D.S. Kim, S.K. Ha, I. Choi, J.M. Lee, J.H. Sung, Biotechnol. Bioeng. 114 (2017)

  • A.D. Metcalfe, M.W. Ferguson, J. R. Soc. Interface. 4 (2007)

  • J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.H. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu, R. Chaturvedi, S.N. Bhatia, C.S. Chen, Nat. Mater. 11 (2012)

  • S.M. Nugent, C.E. Mothersill, C. Seymour, B. McClean, F.M. Lyng, J.E. Murphy, Radiat. Res. 168 (2007)

  • H. Olson, G. Betton, J. Stritar, D. Robinson, Toxicol. Lett. 102-103 (1998)

  • S. Ramanujan, A. Pluen, T.D. McKee, E.B. Brown, Y. Boucher, R.K. Jain, Biophys. J. 83 (2002)

  • C.A. Ryan, I. Kimber, D.A. Basketter, M. Pallardy, L.A. Gildea, G.F. Gerberick, Toxicol. Appl. Pharmacol. 221 (2007)

  • J. Seok, H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, C.C. Finnerty, C.M. Lopez, S. Honari, E.E. Moore, J.P. Minei, J. Cuschieri, P.E. Bankey, J.L. Johnson, J. Sperry, A.B. Nathens, T.R. Billiar, M.A. West, M.G. Jeschke, M.B. Klein, R.L. Gamelli, N.S. Gibran, B.H. Brownstein, C. Miller-Graziano, S.E. Calvano, P.H. Mason, J.P. Cobb, L.G. Rahme, S.F. Lowry, R.V. Maier, L.L. Moldawer, D.N. Herndon, R.W. Davis, W. Xiao, R.G. Tompkins, Inflammation, L.S.C.R.P. Host Response to Injury, Proc. Natl. Acad. Sci. U. S. A. 110, (2013)

  • I. Streeter, U. Cheema, Analyst. 136 (2011)

  • J.H. Sung, C. Kam, M.L. Shuler, Lab. Chip. 10 (2010)

  • J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, M.L. Shuler, Lab. Chip. 13 (2013)

  • B.L. Vaughan Jr., P.A. Galie, J.P. Stegemann, J.B. Grotberg, Biophys. J. 105 (2013)

  • H. Vorsmann, F. Groeber, H. Walles, S. Busch, S. Beissert, H. Walczak, D. Kulms, Cell. Death. Dis. 4 (2013)

  • X.Y. Wang, Z.H. Jin, B.W. Gan, S.W. Lv, M. Xie, W.H. Huang, Lab. Chip. 14 (2014)

  • D.Q. Wu, G.L. Zhang, C. Shen, Q. Zhao, H. Li, Q. Meng, World. J. Gastroenterol. 11 (2005)

  • X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, K.W. Ng, M.R. Dokmeci, A.M. Ghaemmaghami, A. Khademhosseini, Adv. Healthc. Mater. 5 (2016)

  • Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. Lopez, A.D. Stroock, Proc. Natl. Acad. Sci. U. S. A. 109 (2012)

Download references

Acknowledgements

This work was supported by Hongik University Research Fund, Korea Institute for Advancement of Technology (Establishment of Infrastructure for Industrialization of Korean Useful Microbes, R0004073), Small and Medium Business Administration of Korean Government (S2272211), and National Research Foundation of Korea (2016R1D1A1B03934710 and NRF-2015R1A4A1041631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hwan Sung.

Electronic supplementary material

ESM 1

(DOCX 7273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jin, SP., Kim, Y.K. et al. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed Microdevices 19, 22 (2017). https://doi.org/10.1007/s10544-017-0156-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0156-5

Keywords

Navigation