Skip to main content
Log in

An ionic liquid based strain sensor for large displacement measurement

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A robust and low cost ionic liquid based strain sensor is fabricated for high strain measurements in biomedical applications (up to 40 % and higher). A tubular 5 mm long silicone microchannel with an inner diameter of 310 µm and an outer diameter of 650 µm is filled with an ionic liquid. Three ionic liquids have been investigated: 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, ethylammonium nitrate and cholinium ethanoate. When the channel is axially stretched, geometrical deformations change the electrical impedance of the liquid channel. The sensors display a linear response and low hysteresis with an average gauge factors of 1.99 for strains up to 40 %. Additionally, to fix the sensor by surgical stitching to soft biological tissue, a sensor with tube clamps consisting of photopatternable SU-8 epoxy-based resin is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • C. Angell, W. Xu, J. Belieres, M. Yoshizawa, Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications (2004)

  • M. Apreleva, I. Parsons, J.J. Warner, F.H. Fu, S.L.Y. Woo, J. Shoulder Elb. Surg. 9(5), 409 (2000)

    Article  Google Scholar 

  • J.H. Bancroft, H.G. Jones, B. Pullan, Behav. Res. Ther. 4(1-2), 239 (1966)

    Article  Google Scholar 

  • D. Barlow, R. Becker, H. Leitenberg, W. Agras, J. Appl. Behav. Anal. 3(1), 73 (1970)

    Article  Google Scholar 

  • C. Becnel, Y. Desta, K. Kelly, J. Micromech. Microeng. 15(6), 1242 (2005)

    Article  Google Scholar 

  • V.V. Chaban, I.V. Voroshylova, O.N. Kalugin, O.V. Prezhdo, J. Phys. Chem. B. 116(26), 7719 (2012)

    Article  Google Scholar 

  • S. Cheng, Z. Wu, Adv. Funct. Mater. 21(12), 2282 (2011)

    Article  Google Scholar 

  • Y.N. Cheung, Y. Zhu, C.H. Cheng, C. Chao, W.W.F. Leung, Sensors Actuators A Phys. 147(2), 401 (2008)

    Article  Google Scholar 

  • J.B. Chossat, Y.L. Park, R.J. Wood, V. Duchaine, IEEE Sensors J. 13(9), 3405 (2013)

    Article  Google Scholar 

  • A. del Campo, C. Greiner, J. Micromech. Microeng. 17(6), R81 (2007)

    Article  Google Scholar 

  • R. Elsner, C. Eagan, S. Andersen, J. Appl. Physiol. 14(5), 871 (1959)

    Google Scholar 

  • J. Gamble, I. Gartside, F. Christ, J. Physiol. 464, 407 (1993)

    Article  Google Scholar 

  • H.E. Holling, H.C. Boland, E. Russ, Am. Heart J. 62(2), 194 (1961)

    Article  Google Scholar 

  • S. Kim, C. Laschi, B. Trimmer, Trends Biotechnol. 31(5), 287 (2013)

    Article  Google Scholar 

  • H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, J. Micromech. Microeng. 7(3), 121 (1997)

    Article  Google Scholar 

  • A.F. Pacela, Med. Biol. Eng. 4(1), 1 (1966)

    Article  Google Scholar 

  • O. Palumbo, F. Trequattrini, F.M. Vitucci, A. Paolone, J. Phys. Chem. B. 119(40), 12905 (2015)

    Article  Google Scholar 

  • Y.L. Park, B.R. Chen, R.J. Wood, IEEE Sensors J. 12(8), 2711 (2012)

    Article  Google Scholar 

  • M. Petkovic, J.L. Ferguson, H.N. Gunaratne, R. Ferreira, M.C. Leitao, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Green Chem. 12(4), 643 (2010)

    Article  Google Scholar 

  • F. Schneider, T. Fellner, J. Wilde, U. Wallrabe, J. Micromech. Microeng. 18(6), 065008 (2008)

    Article  Google Scholar 

  • M.W. Toepke, D.J. Beebe, Lab Chip. 6(12), 1484 (2006)

    Article  Google Scholar 

  • E. Verneuil, A. Buguin, P. Silberzan, EPL (Europhysics Letters). 68(3), 412 (2004)

    Article  Google Scholar 

  • M. Vranes, S. Dozic, V. Djeric, S. Gadzuric, J. Chem. Eng. Data. 57(4), 1072 (2012)

    Article  Google Scholar 

  • P. Walden, Bull. Acad. Imper. Sci. St. Pétersbourg. 8(6), 405 (1914)

    Google Scholar 

  • R. Whitney, J. Physiol. 121(1), 1 (1953)

    Article  Google Scholar 

  • T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6(5), 296 (2011)

    Article  Google Scholar 

  • R. Yang, W. Wang, Sensors Actuators B Chem. 110(2), 279 (2005)

    Article  Google Scholar 

  • M. Youdin, T. Reich, Ann. Biomed. Eng. 4(3), 220 (1976)

    Article  Google Scholar 

  • Y. Zhu, C. Chao, C.H. Cheng, W.W.F. Leung, IEEE Electron Device Lett. 30(4), 337 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Frederik Ceyssens is a postdoctoral research fellow of FWO-Flanders. Grim Keulemans worked under a Ph.D. grant of the Agency for Innovation by Science and Technology in Flanders (IWT). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n ° 340931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grim Keulemans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keulemans, G., Ceyssens, F. & Puers, R. An ionic liquid based strain sensor for large displacement measurement. Biomed Microdevices 19, 1 (2017). https://doi.org/10.1007/s10544-016-0141-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0141-4

Keywords

Navigation