Skip to main content
Log in

A pneumatically-driven microfluidic system for size-tunable generation of uniform cell-encapsulating collagen microbeads with the ultrastructure similar to native collagen

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study reports a microfluidic system for high throughput, uniform, and size-tunable generation of cell-containing collagen microbeads. The principle is based on two pneumatically-driven mechanisms to achieve multi-channel mixture suspension transportation, and to actuate the spotting actions of micro-vibrators that continuously generate tiny collagen micro-droplets into a thin oil layer and then a sterile Pluronic® F127 surfactant solution located below. The temporarily formed collagen microdroplets are then thermally gelatinized. By regulating the feeding rate of cells/collagen suspension, and the spotting frequency of micro-vibrator, the size of the collagen microbeads can be manipulated. One of the key technical features is its capability to generate uniform collagen microbeads (coefficient of variation: 5.4–8.6 %) with sizes ranging from 73.9 to 349.3 μm in diameter. This is currently difficult to achieve using the existing methods particularly the generation of cell-encapsulating collagen microbeads with diameter less than 100 μm. Another advantageous trait is that the ultrastructure of the generated collagen microbeads is similar to that found in native collagen. In this study, moreover, the use of the proposed device for the microencapsulation of 3T3 cells in collagen microbeads has been successfully demonstrated showing that the encapsulated cells maintained high cell viability (96 ± 2 %). Furthermore, a reasonable proliferative capability of the encapsulated cells was observed during 7 days culture. As a whole, the proposed device has opened up a new route to generate cell-containing collagen microbeads, which is found particularly meaningful for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A. Batorsky, J. Liao, A.W. Lund, G.E. Plopper, J.P. Stegemann, Biotechnol. Bioeng. 92, 492 (2005)

    Article  Google Scholar 

  • B. Cai, F. Guo, L. Zhao, R. He, B. Chen, Z. He, X. Yu, S. Guo, B. Xiong, W. Liu, X. Zhao, Microfluid. Nanofluid. (2013). doi:10.1007/s10404-013-1198-5

    Google Scholar 

  • B.P. Chan, T.Y. Hui, M.Y. Wong, K.H. Yip, G.C. Chan, Tissue Eng. C Methods 16, 225 (2010)

    Article  Google Scholar 

  • H.W. Cheng, Y.K. Tsui, K.M. Cheung, D. Chan, B.P. Chan, Tissue Eng C Methods 15, 697 (2009)

    Article  Google Scholar 

  • C.H. Choi, J.H. Jung, Y.W. Rhee, D.P. Kim, S.E. Shim, C.S. Lee, Biomed. Microdevices 9, 855 (2007)

    Article  Google Scholar 

  • M.F. Desimone, C. Hélary, G. Mosser, M.M. Giraud-Guille, J. Livage, T. Coradin, J. Mater. Chem. 20, 666 (2010)

    Article  Google Scholar 

  • J. Heino, Bioessays 29, 1001 (2007)

    Article  Google Scholar 

  • G. Hortelano, A. Al-Hendy, F.A. Ofosu, P.L. Chang, Blood 87, 5095 (1996)

    Google Scholar 

  • A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, K. Mabuchi, Tissue Eng. 12, 2333 (2006)

    Article  Google Scholar 

  • S.B. Huang, M.H. Wu, G.B. Lee, Sensors Actuators B Chem. 147, 755 (2010)

    Article  Google Scholar 

  • S.B. Huang, M.H. Wu, S.S. Wang, G.B. Lee, Biomed. Microdevices 13, 415 (2011)

    Article  Google Scholar 

  • S.B. Huang, S.S. Wang, C.H. Hsieh, Y.C. Lin, C.S. Lai, M.H. Wu, Lab Chip 13, 1133 (2013)

    Article  Google Scholar 

  • T.Y. Hui, K.M. Cheung, W.L. Cheung, D. Chan, B.P. Chan, Biomaterials 29, 3201 (2008)

    Article  Google Scholar 

  • N.C. Hunt, L.M. Grover, Biotechnol. Lett. 32, 733 (2010)

    Article  Google Scholar 

  • B.D. Iverson, S.V. Garimella, Microfluid. Nanofluid. 5, 145 (2008)

    Article  Google Scholar 

  • A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, J. Control. Release 82, 189 (2002)

    Article  Google Scholar 

  • A. Kumachev, J. Greener, E. Tumarkin, E. Eiser, P.W. Zandstra, E. Kumacheva, Biomaterials 32, 1477 (2011)

    Article  Google Scholar 

  • B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.H. Lee, Biomaterials 33, 837 (2012)

    Article  Google Scholar 

  • A.K. Lynn, I.V. Yannas, W. Bonfield, J. Biomed. Mater. Res. B 71, 343 (2004)

    Article  Google Scholar 

  • S. Prakash, T.M.S. Chang, Nat. Med. 2, 883 (1996)

    Article  Google Scholar 

  • C.H. Quek, J. Li, T. Sun, M.L. Chan, H.Q. Mao, L.M. Gan, K.W. Leong, H. Yu, Biomaterials 25, 3531 (2004)

  • S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomed. Microdevices 9, 91 (2007)

    Article  Google Scholar 

  • S.W. Tsai, C.C. Chen, P.L. Chen, F.Y. Hsu, J. Biomed. Mater. Res. A 91, 985 (2009)

    Article  Google Scholar 

  • Y. Tsuda, Y. Morimoto, S. Takeuchi, Langmuir 26, 2645 (2010)

    Article  Google Scholar 

  • E. Tumarkin, L. Tzadu, E. Csaszar, M. Seo, H. Zhang, A. Lee, R. Peerani, K. Purpura, P.W. Zandstra, E. Kumacheva, Integr. Biol. 3, 653 (2011)

    Article  Google Scholar 

  • J. Wan, Polymer 4, 1084 (2012)

    Article  Google Scholar 

  • K.W. Wang, K.G. Lee, T.J. Park, Y.C. Lee, J.W. Yang, D.H. Kim, S.J. Lee, J.Y. Park, Biotechnol. Bioeng. 109, 289 (2012)

    Article  Google Scholar 

  • M.H. Wu, W.C. Pan, Microfluid. Nanofluid. 8, 823 (2010)

    Article  Google Scholar 

  • M.H. Wu, J.P.G. Urban, Z. Cui, Z.F. Cui, Biomed. Microdevices 8, 331 (2006)

    Article  Google Scholar 

  • T.J. Wu, H.H. Huang, Y.M. Hsu, S.R. Lyu, Y.J. Wang, Biotechnol. Bioeng. 98, 578 (2007)

    Article  Google Scholar 

  • M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui, G.B. Lee, Sensors Actuators B Chem. 129, 231 (2008)

    Article  Google Scholar 

  • T. Yoshioka, R. Hirano, T. Shioya, M. Kako, Biotechnol. Bioeng. 35, 66 (1990)

    Article  Google Scholar 

Download references

Acknowledgement

This study was sponsored by the National Science Council (NSC) of Taiwan (NSC 101-2221-E-182 -001 -MY3 and NSC 102-2221-E-182 -019-MY2 ) and Chang Gung Memorial Hospital (CMRPD2C0101 and CMRPG 3A1212/3A1213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hsien Wu.

Additional information

Song-Bin Huang, Yu-Han Chang and Hsin-Chieh Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SB., Chang, YH., Lee, HC. et al. A pneumatically-driven microfluidic system for size-tunable generation of uniform cell-encapsulating collagen microbeads with the ultrastructure similar to native collagen. Biomed Microdevices 16, 345–354 (2014). https://doi.org/10.1007/s10544-014-9837-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9837-5

Keywords

Navigation