Skip to main content
Log in

A three-dimensional microfluidic approach to scaling up microencapsulation of cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Current applications of the microencapsulation technique include the use of encapsulated islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to liver transplantation for patients with chronic liver disease. Also, microcapsules can be used for controlled delivery of therapeutic drugs. The two most widely used devices for microencapsulation are the air-syringe pump droplet generator and the electrostatic bead generator, each of which is fitted with a single needle through which droplets of cells suspended in alginate solution are produced and cross-linked into microbeads. A major drawback in the design of these instruments is that they are incapable of producing sufficient numbers of microcapsules in a short-time period to permit mass production of encapsulated and viable cells for transplantation in large animals and humans. We present in this paper a microfluidic approach to scaling up cell and protein encapsulations. The microfluidic chip consists of a 3D air supply and multi-nozzle outlet for microcapsule generation. It has one alginate inlet and one compressed air intlet. The outlet has 8 nozzles, each having 380 micrometers inner diameter, which produce hydrogel microspheres ranging from 500 to 700 μm in diameter. These nozzles are concentrically surrounded by air nozzles with 2 mm inner diameter. There are two tubes connected at the top to allow the air to escape as the alginate solution fills up the chamber. A variable flow pump 115 V is used to pump alginate solution and Tygon® tubing is used to connect in-house air supply to the air channel and peristaltic/syringe pump to the alginate chamber. A pressure regulator is used to control the flow rate of air. We have encapsulated islets and proteins with this high throughput device, which is expected to improve product quality control in microencapsulation of cells, and hence the outcome of their transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • D.J. Beebe, G.A. Mensing and G.M. Walker, Annu. Rev. Biomed. Eng. (2002) doi:10.1146/annurev.bioeng.4.112601.125916

  • R. Calafiore, G. Calabrese, G. Basta, G. Luca, A. Lemmi, M. Montanucci, L. Racanicchi, F. Mancuso, P. Brunetti, Diabetes Care 29, 137–138 (2006)

    Article  Google Scholar 

  • M. Chabert, J.-L. Viovy, Proc. Natl. Acad. Sci. U. S. A. 105(9), 3191–3196 (2008)

    Article  Google Scholar 

  • K. Chin, S.F. Khattak, S.R. Bhatia, S.C. Roberts, Biotechnol. Prog. 24, 358–366 (2008)

    Article  Google Scholar 

  • M.D. Darrabie, W.F. Kendall, E.C. Opara, Biomaterials 26(34), 6846–6852 (2005)

    Article  Google Scholar 

  • J. de Jong, R.G.H. Lammertink and M. Wessling, Lab Chip (2006) doi:10.1039/b603275c

  • P. De Vos, B.J. De Haan, R. Van Schilfgaarde, Biomaterials 18, 1085–1090 (1997)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  • D. Dufrane, R.M. Goebbels, A. Saliez, Y. Guiot, P. Gianello, Transplantation 81(9), 1345–1353 (2006)

    Article  Google Scholar 

  • J. Field, A. Farney, D. Sutherland, Transplantation 61(10), 1554–1556 (1996)

    Article  Google Scholar 

  • M.R. Garfinkel, R.C. Harland, E.C. Opara, J. Surg. Res. 76, 7–10 (1998)

    Article  Google Scholar 

  • W.R. Gombotz, S.F. Wee, Adv. Drug Deliv. Rev. 31, 267–285 (1998)

    Article  Google Scholar 

  • V. Haverkamp, W. Ehrfeld, K. Gebauer, V. Hessel, H. Lowe, T. Richter, C. Wille, Fresenius’ J. Anal. Chem. 364, 617–624 (1999)

    Article  Google Scholar 

  • B.R. Hsu, H.C. Chen, S.H. Fu, Y.Y. Huang, H.S. Huang, J. Formos. Med. Assoc. 93, 240–245 (1994)

    Google Scholar 

  • A. Joly, J.F. Desjardins, B. Fredmond, M. Desille, J.P. Campion, Y. Malledant, Y. Lebreton, G. Semana, F. Edwards-Levy, M.C. Levy, B. Clement, Transplantation 63, 795–803 (1997)

    Article  Google Scholar 

  • I. Kobayashi, S. Mukataka, M. Nakajima, Ind. Eng. Chem. Res. 44, 5852–5856 (2005)

    Article  Google Scholar 

  • P.E. Lacy, M. Kostianovsky, Diabetes 16, 35–39 (1967)

    Google Scholar 

  • R.P. Lanza, W.L. Chick, Surgery 121, 1–9 (1997)

    Article  Google Scholar 

  • F.A. Leblond, G. Simard, N. Henley, B. Rocheleau, P.M. Huet, J.P. Hallé, Cell Transplant. 8, 327–337 (1999)

    Google Scholar 

  • R.H. Li, Adv. Drug Deliv. Rev. 33(1–2), 87–109 (1998)

    Article  Google Scholar 

  • F. Lim, A.M. Sun, Science 210, 908–910 (1980)

    Article  Google Scholar 

  • K. Mae, T. Maki, I. Hasegawa, U. Eto, Y. Mizutani, N. Honda, Chem. Eng. J. (Amsterdam, Neth.) 101, 31–38 (2004)

    Google Scholar 

  • M.L. Moya, S. Lucas, M. Francis-Sedlak, X. Liu, M.R. Garfinkel, E.C. Opara, E.M. Brey, Microvasc. Res. 78, 142–147 (2009)

    Article  Google Scholar 

  • M.L. Moya, J.J. Huang, M.E. Francis-Sedlak, S.W. Kao, E.C. Opara, M.H. Cheng, E.M. Brey, Biomaterials 31, 2816–2826 (2010)

    Article  Google Scholar 

  • J. Narasimhan, I. Papautsky, J. Micromech. Microeng. 14, 96–103 (2004)

    Article  Google Scholar 

  • T. Nisisako, T. Torii, Lab Chip 8, 287–293 (2008)

    Article  Google Scholar 

  • E.C. Opara, W.F. Kendall, Expert. Opin. Biol. Ther. 2, 503–511 (2002)

    Article  Google Scholar 

  • E.C. Opara, S.H. Mirmalek-Sani, O. Khanna, M.L. Moya, E.M. Brey, J. Investig. Med. 58(7), 831–837 (2010)

    Google Scholar 

  • G. Orive, R.M. Hernandez, A.G. Rodriquez, R. Calafiore, T.M. Chang, P. de Vos, G. Hortelano, D. Hunkeler, I. Lacik, J. Pedraz, Trends Biotechnol. 22(2), 87–92 (2004)

    Article  Google Scholar 

  • P. Soon-Shiong, R.E. Heintz, N. Merideth, Q.X. Yao, Z. Yao, T. Zheng, M. Murphy, M.K. Moloney, M. Schmehl, M. Harris, R. Mendez, R. Mendez, P.A. Sandford, Lancet 343, 950–951 (1994)

    Article  Google Scholar 

  • J. Steigert, S. Haeberle, T. Brenner, C. Muller, C.P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Ruhe, R. Zengerle, J. Ducree, J. Micromech. Microeng. 17, 333–341 (2007)

    Article  Google Scholar 

  • S. Suguira, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomed. Microdevices 9, 91–99 (2007)

    Article  Google Scholar 

  • Y. Sun, X. Ma, D. Zhou, I. Vacek, A.M. Sun, J. Clin. Invest. 98, 1417–1422 (1996)

    Article  Google Scholar 

  • C.G. Thanos, R.B. Elliott, Expert. Opin. Biol. Ther. 9(1), 29–44 (2009)

    Article  Google Scholar 

  • B.E. Tuch, G.W. Keogh, L.J. Williams, W. Wu, J.L. Foster, V. Vaithilingam, R. Philips, Diabetes Care 32, 1887–1889 (2009)

    Article  Google Scholar 

  • H. Uludag, P. De Vos, P.A. Tresco, Adv. Drug Deliv. Rev. 42, 29–64 (2000)

    Article  Google Scholar 

  • T. Wang, J. Adcock, W. Kuhtreiber, D. Qiang, K.J. Salleng, I. Trenary, P. Williams, Transplantation 85, 331–337 (2008)

    Article  Google Scholar 

  • G.C. Weir, S. Bonner-Weir, Diabetes 46, 1247–1256 (1997)

    Article  Google Scholar 

  • G.M. Whitesides, Nature (2006) doi:10.1038/nature05058

  • G.H.J. Wolters, W.M. Fritschy, D. Gerrits, R. Van Schilfgaarde, J. Appl. Biomater. 3, 281–286 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Institutes of Health (GRANT # RO1DK080897), the Rosenfeld Estate, Greenville, NC for research in Dr. Opara’s laboratory and the National Science Foundation IR/D Program for providing travel support for Dr. M. K. Ramasubramanian to direct the research at North Carolina State University. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and not necessarily reflect the views of the funding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melur K. Ramasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tendulkar, S., Mirmalek-Sani, SH., Childers, C. et al. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed Microdevices 14, 461–469 (2012). https://doi.org/10.1007/s10544-011-9623-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9623-6

Keywords

Navigation