Skip to main content
Log in

A model for predicting magnetic particle capture in a microfluidic bioseparator

Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A model is presented for predicting the capture of magnetic micro/nano-particles in a bioseparation microsystem. This bioseparator consists of an array of conductive elements embedded beneath a rectangular microfluidic channel. The magnetic particles are introduced into the microchannel in solution, and are attracted and held by the magnetic force produced by the energized elements. Analytical expressions are obtained for the dominant magnetic and fluidic forces on the particles as they move through the microchannel. These expressions are included in the equations of motion, which are solved numerically to predict particle trajectories and capture time. This model is well-suited for parametric analysis of particle capture taking into account variations in particle size, material properties, applied current, microchannel dimensions, fluid properties, and flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • K.J. Binns, P.J. Lawrenson, C.W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields (Wiley, New York, 1992)

    Google Scholar 

  • J.-W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson, Sens. Actuators B 68, 34 (2000)

    Article  Google Scholar 

  • J.-W. Choi, T.M. Liakopoulos, Biosens. Bioelectron. 16, 409 (2001)

    Article  Google Scholar 

  • D. Fletcher, IEEE Trans. Magn. 27, 3655 (1991)

    Article  Google Scholar 

  • E.P. Furlani, Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications (Academic, New York, 2001)

    Google Scholar 

  • E.P. Furlani, J. Appl. Phys. 99(2), 024912.1 (2006)

    Article  Google Scholar 

  • E.P. Furlani, J. Phys. D. Appl. Phys 40, 1313 (2007)

    Article  Google Scholar 

  • E.P. Furlani, K.C. Ng, Phys. Rev. E 73, 061919 (2006)

    Article  Google Scholar 

  • E.P. Furlani, Y. Sahoo, J. Phys. D Appl. Phys. 39(9), 1724 (2006)

    Article  Google Scholar 

  • E.J. Furlani, E.P. Furlani, J. Magn. Magn. Mat. 312, 187 (2007)

    Article  Google Scholar 

  • R. Gerber, M. Takayasum, F.J. Friedlander, IEEE Trans Magn 19(5), 2115 (1983)

    Article  Google Scholar 

  • M.A.M. Gijs, Microfluid Nanofluid 1, 22 (2004)

    Google Scholar 

  • K.-H. Han, A.B. Frazier, J. Micromech. Sys. 14(6), 1422 (2005)

    Article  Google Scholar 

  • N. Ichikawa, K. Hosokawa, R. Maeda, J. Colloid Interface Sci. 280, 155 (2004)

    Article  Google Scholar 

  • R.S. Molday, S.P. Yen, A. Rembaum, Nature 268, 437 (1997)

    Article  Google Scholar 

  • Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003)

    Article  Google Scholar 

  • I. Safarýk, M. Safarýkova, in Scientific and Clinical Applications of Magnetic Carriers, ed. by U. Hafeli, W. Schutt, J. Teller, M. Zborowski (Plenum, New York, 1997), p. 323

    Google Scholar 

  • M. Zborowski, C.B. Fuh, R. Green, L. Sun, J.J. Chalmers, Anal. Chem. 67, 3702 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Furlani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlani, E.P., Sahoo, Y., Ng, K.C. et al. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices 9, 451–463 (2007). https://doi.org/10.1007/s10544-007-9050-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9050-x

Keywords

Navigation