Skip to main content
Log in

Paige’s Algorithm for solving a class of tensor least squares problem

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of tensor least squares problem with an invertible linear transform, which arises in image restoration. Based on the operator-bidiagonal procedure, two Paige’s algorithms are designed to solve it. The convergence theorems of the new methods are derived. Numerical experiments are performed to illustrate the feasibility and efficiency of the new methods, including when the algorithm is tested with the synthetic data and on some image restoration problems. Comparisons with some previous methods are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

Notes

  1. When we use an algorithm to solve the ill-posed problem, the algorithm exhibits a gradual convergence behavior for the first k iterations. However, after the kth step, the error will increase and the convergence will disappear. This is called "semi-convergence".

  2. Set \({{\mathscr {X}}}_k\) be the kth iterative value of an algorithm. If the noise \({\mathscr {E}}\) satisfies \(\Vert {{\mathscr {E}}}\Vert _F \le \Vert {{\mathscr {A}}}{*_L}{{\mathscr {X}}}_k - {{{\mathscr {B}}}}\Vert _F\), it is called as a low noise level. Conversely, if \({\mathscr {E}}\) satisfies \( \Vert {{\mathscr {E}}}\Vert _F > \Vert {{\mathscr {A}}}{*_L}{{\mathscr {X}}}_k - {{{\mathscr {B}}}}\Vert _F \), it is called as a high noise level.

References

  1. Bader, B.W., Kolda, T.G., et al.: Tensor Toolbox for MATLAB, Version 3.2.1, https://www.tensortoolbox.org

  2. Behera, R., Mishra, D.: Further results on generalized inverses of tensors via the Einstein product. Linear Multilinear Algebra 65, 1662–1682 (2017)

    Article  MathSciNet  Google Scholar 

  3. Behera, R., Sahoo, J.K., Mohapatra, R.N., et al.: Computation of generalized inverses of tensors viat-product. Numer. Linear Algebra Appl. 29, 1–23 (2022)

    Article  Google Scholar 

  4. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bouhamidi, A., Jbilou, K., Raydan, M.: Convex constrained optimization for large-scale generalized Sylvester equations. Comput. Optim. Appl. 48, 233–253 (2011)

    Article  MathSciNet  Google Scholar 

  6. Brazell, M., Li, N., Navasca, C., et al.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34, 542–570 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bykov, V.I., Kytmanov, A.M., Lazman, M.Z., et al.: Elimination Methods in Polynomial Computer Algebra. Kluwer Academic Publishers, The Netherlands (1998)

    Book  Google Scholar 

  8. Cao, Z., Xie, P.: Perturbation analysis for \(t\)-product based tensor inverse, Moore-Penrose inverse and tensor system, arXiv preprint arXiv:2107.09544 (2021)

  9. Chen, Z., Lu, L.Z.: A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 55, 1281–1292 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cui, L.B., Chen, C., Li, W., et al.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dehdezi, E.K., Karimi, S.: A fast and efficient Newton-Shultz-type iterative method for computing inverse and Moore-Penrose inverse of tensors. J. Math. Model. 9, 645–664 (2021)

    MathSciNet  Google Scholar 

  12. Ding, W.Y., Wei, Y.M.: Solving multi-linear systems with M-tensors. J. Sci. Comput. 68, 689–715 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ely, G., Aeron, S., Hao, N., et al.: 5D and 4D pre-stack seismic data completion using tensor nuclear norm. TNN, SEG International Exposition and Eighty-Third Annual Meeting at Houston, TX (2013)

  14. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Industr. Appl. Math. 2, 205–224 (1965)

    MathSciNet  Google Scholar 

  15. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  Google Scholar 

  16. Guide, M.E., Ichi, A.E., Jbilou, K.: Discrete cosine transform LSQR and GMRES methods for multidimensional ill-posed problems, arXiv preprint arXiv:2103.11847 (2021)

  17. Guide, M.E., Ichi, A.E., Jbilou, K.: Discrete cosine transform LSQR methods for multidimensional ill-posed problems. J. Math. Model. 10, 21–37 (2022)

    MathSciNet  Google Scholar 

  18. Guide, M.E., Ichi, A.E., Jbilou, K., et al.: Tensor Krylov subspace methods via the T-product for color image processing, arXiv preprint arXiv:2006.07133 (2020)

  19. Guide, M.E., Ichi, A.E., Beik, F.P., et al.: Tensor GMRES and Golub-Kahan Bidiagonalization methods via the Einstein product with applications to image and video processing, arXiv preprint arXiv:2005.07458 (2020)

  20. Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

  21. Hao, N., Kilmer, M.E., Braman, K., et al.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  22. Huang, B.: Numerical study on Moore-Penrose inverse of tensors via Einstein product. Numer. Algorithms 87, 1767–1797 (2021)

    Article  MathSciNet  Google Scholar 

  23. Huang, B., Ma, C.: An iterative algorithm to solve the generalized Sylvester tensor equations. Linear Multilinear Algebra 68, 1175–1200 (2020)

    Article  MathSciNet  Google Scholar 

  24. Huang, B., Ma, C.: Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations. Appl. Math. Comput. 369, 1–16 (2020)

    MathSciNet  Google Scholar 

  25. Iusem, A.N.: On the convergence properties of the projected gradient method for convex optimization. Comput. Appl. Math. 22, 37–52 (2003)

    Article  MathSciNet  Google Scholar 

  26. Karimi, S., Dehghan, M.: Global least squares method based on tensor form to solve linear systems in Kronecker format. T. I. Meas. Control 40, 2378–2386 (2018)

    Article  Google Scholar 

  27. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  Google Scholar 

  28. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  29. Kilmer, M.E., Horesh, L., Avron, H., et al.: Tensor-tensor algebra for optimal representation and compression of multiway data. Proc. Natl. Acad. Sci. 118, e2015851118 (2021)

    Article  MathSciNet  Google Scholar 

  30. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  31. Liu, X., Wang, L., Wang, J., et al.: A three-dimensional point spread function for phase retrieval and deconvolution. Opt. Express 20, 15392–15405 (2012)

    Article  Google Scholar 

  32. Paige, C.C.: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal. 11, 197–209 (1974)

    Article  MathSciNet  Google Scholar 

  33. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comp. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  34. Reichel, L., Ugwu, U.O.: The tensor Golub-Kahan-Tikhonov method applied to the solution of ill-posed problems with a \(t\)-product structure. Numer. Linear Algebra Appl. 29, e2412 (2022)

    Article  MathSciNet  Google Scholar 

  35. Reichel, L., Ugwu, U.O.: Tensor Krylov subspace methods with an invertible linear transform product applied to image processing. Appl. Numer. Math. 166, 186–207 (2021)

    Article  MathSciNet  Google Scholar 

  36. Savas, B., Eldén, L.: Krylov-type methods for tensor computations. Linear Algebra Appl. 438, 891–918 (2013)

    Article  MathSciNet  Google Scholar 

  37. Sun, L., Zheng, B., Bu, C., et al.: Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64, 686–698 (2016)

    Article  MathSciNet  Google Scholar 

  38. Sun, L., Zheng, B., Wei, Y., et al.: Generalized inverses of tensors via a general product of tensors. Front. Math. China 13, 893–911 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wang, Q.W., Xu, X., Duan, X.: Least squares solution of the quaternion Sylvester tensor equation. Linear Multilinear Algebra 69, 104–130 (2021)

    Article  MathSciNet  Google Scholar 

  40. Xie, Z.J., Jin, X.Q., Sin, V.K.: An optimal preconditioner for tensor equations involving Einstein product. Linear Multilinear Algebra 68, 886–902 (2020)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Z., Ely, G., Aeron, S., et al.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)

Download references

Acknowledgements

The authors thank the editor and the reviewers for the constructive and helpful comments on the revision of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Duan.

Ethics declarations

Conflicts of interest

This study does not have any conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant No. 12361079; 12201149; 12261026; 12371023), the Natural Science Foundation of Guangxi Province (Grant No. 2023GXNSFAA026067), and the Innovation Project of GUET Graduate Education (Grant No. 2022YCXS147; 2022YCXS140).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, XF., Zhang, YS., Wang, QW. et al. Paige’s Algorithm for solving a class of tensor least squares problem. Bit Numer Math 63, 48 (2023). https://doi.org/10.1007/s10543-023-00990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00990-y

Keywords

Mathematics Subject Classification

Navigation