Skip to main content
Log in

Faster SDC convergence on non-equidistant grids by DIRK sweeps

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Spectral deferred correction methods for solving stiff ODEs are known to converge reasonably fast towards the collocation limit solution on equidistant grids, but show a less favourable contraction on non-equidistant grids such as Radau-IIa points. We interprete SDC methods as fixed point iterations for the collocation system and propose new DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good convergence is recovered also on non-equidistant grids. The properties of different variants are explored on a couple of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Auzinger, W., Hofstätter, H., Koch, O., Kreuzer, W., Weinmüller, E.: Superconvergent defect correction algorithms. WSEAS Trans. Syst. 4, 1378–1383 (2004)

    MATH  Google Scholar 

  2. Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. Part I: general theory. Numer. Algor. 36(2), 135–156 (2004)

    Article  MATH  Google Scholar 

  3. Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. Part II: stiff initial value problems. Numer. Algor. 40(3), 285–303 (2005)

    Article  MATH  Google Scholar 

  4. Bowen, M.M.: A spectral deferred correction method for solving cardiac models. PhD thesis, Duke University, Durham (2011)

  5. Bu, S., Huang, J., Minion, M.L.: Semi-implicit Krylov deferred correction methods for differential algebraic equations. Math. Comput. 81, 2127–2157 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christlieb, A.J., Ong, B.W., Qiu, J.-M.: Comments on high order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci 4(1), 27–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuflhard, P., Weiser, M.: Adaptive numerical solution of PDEs. de Gruyter, Germany (2012)

  9. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. App. Math. Comp. Sci. 7(1), 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frank, R., Überhuber, C.W.: Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations. BIT 17, 146–159 (1977)

    Article  MathSciNet  Google Scholar 

  12. Gustafsson, B., Kress, W.: Deferred correction methods for initial value problems. BIT 41(5), 986–995 (2001)

    Article  MathSciNet  Google Scholar 

  13. Hansen, A.C., Strain, J.: On the order of deferred correction. Appl. Num. Math. 61, 961–973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, J., Jia, J., Minion, M.L.: Accelerating the convergence of spectral deferred correction methods. J. Comp. Phys. 214(2), 633–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, J., Jia, J., Minion, M.L.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comp. Phys. 221(2), 739–760 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaps, P., Rentrop, P.: Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33, 55–68 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45, 341–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Layton, A.T., Minion, M.L.: Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods. Commun. App. Math. Comp. Sci. 2(1), 1–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ostermann, A., Roche, M.: Rosenbrock methods for partial differential equations and fractional order of convergence. SIAM J. Numer. Anal. 30(4), 1084–1098 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schild, K.H.: Gaussian collocation via defect correction. Numer. Math. 58, 369–386 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, T., Xie, H., Yin, X.: High-order convergence of spectral deferred correction methods on general quadrature nodes. J. Sci. Comput. 1–13 (2012)

  23. Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ODEs. Numer. Math. 27, 21–39 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to Bodo Erdmann for many fruitful discussions and thorough computational assistance. Partial funding by the DFG Research Center Matheon “Mathematics for key technologies”, projects A17 and F9, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weiser.

Additional information

Communicated by Mechthild Thalhammer.

Supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin, Projects A17 and F9. A preprint is available as ZIB Report 13-30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiser, M. Faster SDC convergence on non-equidistant grids by DIRK sweeps. Bit Numer Math 55, 1219–1241 (2015). https://doi.org/10.1007/s10543-014-0540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0540-y

Keywords

Mathematics Subject Classification

Navigation