Skip to main content
Log in

Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants

  • Original papers
  • Published:
Biologia Plantarum

Abstract

With the dramatic increase in nanotechnologies, it has become probable that biological systems will be exposed to excess of nanoparticles (NPs). However, the impact of NPs on plants remains to be explored. The aim of this research was to determine the effects of ZnO NPs on tomato (Solanum lycopersicum L.) plants. Plant growth, photosynthetic characteristics, chlorophyll fluorescence parameters, and activities of antioxidative enzymes were measured in 35-d-old plants. The ZnO NP treatments significantly inhibited tomato root and shoot growth, decreased the content of chlorophylls a and b, and reduced photosynthetic efficiency and some other chlorophyll fluorescence parameters in a concentration-dependent manner. However, the supernatant of ZnO NP suspensions did not affect growth of tomato, despite the presence of small amounts of Zn2+. Taken together, these results suggest that toxic effects on tomato plants were from ZnO NPs, not from Zn2+ released into the solution; toxicity was likely caused by reduced chlorophyll content and damaged photochemical system, which in turn limited photosynthesis and led to the reduction in biomass accumulation. Also, ZnO NPs enhanced the transcription of genes related to antioxidant capacity, suggesting that ZnO NPs could enhance the defence response by increasing activities of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

ci :

intercellular CO2 concentration

E:

transpiration rate

ETR:

apparent electron transport rate

Fm :

maximum fluorescence

Fv :

variable fluorescence

Fv/Fm :

maximum efficiency of PS II photochemistry

gs:

leaf stomatal conductance

NPs:

nanoparticles

PN :

net photosynthetic rate

PS:

photosystem

qP:

photochemical quenching

qPCR:

quantitative PCR

ROS:

reactive oxygen species

SOD:

superoxide dismutase

ΦPSII :

quantum yield of PS II photochemistry

References

  • Ambavaram, M.M., Basu, S., Krishnan, A., Ramegowda, V., Batlang, U., Rahman, L., Baisakh, N., Pereira, A.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. - Nat. Commun. 5: 5302, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandyopadhyay, S., Peralta-Videa, J.R., Hernandez-Viezcas, J.A., Montes, M.O., Keller, A.A., Gardea-Torresdey, J.L.: Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. - Appl. Spectroscopy Rev. 47: 180–206, 2012a.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., Peralta-Videa, J.R., Plascencia-Villa, G., José-Yacamán, M., Gardea-Torresdey, J.L.: Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. - J. Hazard. Mater. 241-242: 379–386, 2012b.

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. - Sci. total Environ. 515-516: 60–69, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., Dutta, J.: Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. - Int. J. Biosci., Biochem. Bioinform. 1: 282–285, 2011.

    Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalases and peroxidases. - Method. Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Choi, O., Hu, Z.: Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. - Environ. Sci. Technol. 42: 4583–4588, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Cuypers, A., Vangronsveld, J., Clijsters, H.: The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. - Plant Physiol. Biochem. 39: 657–664, 2001.

    Article  CAS  Google Scholar 

  • Dietz, K.J., Herth, S.: Plant nanotoxicology. - Trends Plant Sci. 16: 582–589, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa, C.O., McLean, J.E., Britt, D.W., Anderson, A.J.: Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. - Ind. Biotechnol. 8: 344–357, 2012.

    Article  CAS  Google Scholar 

  • Gajewska, E., Sklodowska, M.: Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves.–Biometals 20: 27–36, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gechev, T.S., Hille, J.: Hydrogen peroxide as a signal controlling plant programmed cell death. - J. cell. Biol. 168: 17–20, 2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Viezcas, J.A., Castillo-Michel, H., Servin, A.D., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. - Chem. Engn. J. 170: 346–352, 2011.

    Article  CAS  Google Scholar 

  • Hu, H., Wang, L., Wang, Q., Jiao, L., Hua, W., Zhou, Q., Huang, X.: Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. - Environ. Toxicol. Chem. 33: 2455–2462, 2014a.

    Article  PubMed  CAS  Google Scholar 

  • Hu, C.W., Liu, X., Li, X.L., Zhao, Y.J.: Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. - Environ. Sci. Pollut. Res. 21: 732–739, 2014b.

    Article  CAS  Google Scholar 

  • Karlsson, H.L.: The comet assay in nanotoxicology research. - Anal. Bioanal. Chem. 398: 651–666, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. - Environ. Toxicol. Chem. 27: 1825–1851, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Landa, P., Vankova, R., Andrlova, J., Hodek, J., Marsik, P., Storchova, H., White, J.C., Vanek, T.: Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. - J. Hazard. Mater. 241-242: 55–62, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. Trans. 11: 591–592, 1983.

    Article  CAS  Google Scholar 

  • Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., Alvarez, P.J.J.: Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. - Environ. Toxicol. Chem. 29: 669–675, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Kim, S., Kim, S., Lee, I.: Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. - Environ. Sci. Pollut. Res. 20: 848–854, 2013.

    Article  CAS  Google Scholar 

  • Lee, W.M., An, Y.J., Yoon, H., Kweon, H.S.: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. - Environ. Toxicol. Chem. 27: 1915–1921, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D., Xing, B.: Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. - Environ. Pollut. 150: 243–250, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D., Xing, B.: Root uptake and phytotoxicity of ZnO nanoparticles. - Environ. Sci. Technol. 42: 5580–5585, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S., Reppert, J., Hu, Q., Hudson, J.S., Reid, M.L., Ratnikova, T.A., Rao, A.M., Luo, H., Ke, P.C.: Uptake, translocation, and transmission of carbon nanomaterials in rice plants. - Small 5: 1128–1132, 2009.

    Article  PubMed  CAS  Google Scholar 

  • López-Moreno, M.L., Rosa, G.D.L., Cruz-Jiménez, G., Castellano, L., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. - Microchem. J. 134: 54–61, 2017.

    Article  CAS  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. - Sci. Total Environ. 408: 3053–3061, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Mehrabi, M., Wilson, R.: Intercalating gold nanoparticles as universal labels for DNA detection. - Small 3: 1491–1495, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Miralles, P., Church, T.L., Harris, A.T.: Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. - Environ. Sci. Technol. 46: 9224–9239, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. - Trends Plant Sci. 9: 490–498, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Mousavi Kouhi, S.M., Lahouti, M., Ganjeali, A., Entezar, M.H.: Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. - Toxicol. Environ. Chem. 96: 861–868, 2014.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). - Chem. Engn. J. 258: 394–401, 2014a.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., Rico, C.M., Zhao, L., Gardea-Torresdey, J.L.: Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. - Metallomics 6: 132–138, 2014b.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. - Science 311: 622–627, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Panda, S.K., Choudhury, S.: Chromium stress in plants. - Braz. J. Plant Physiol. 17: 95–102, 2005.

    Article  CAS  Google Scholar 

  • Parsons, J.G., Lopez, M.L., Gonzalez, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. - Environ. Toxicol. Chem. 29: 1146–1154, 2010.

    PubMed  CAS  Google Scholar 

  • Priyanka, N., Venkatachalam, P.: Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. - Adv. nat. Sci. Nanosci. Nanotechnol. 7: 045018, 2016.

    Article  CAS  Google Scholar 

  • Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J.L., Wiesner, M.R.: Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. - Nanotoxicology 10: 257–278, 2016.

    PubMed  CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51–62, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Stampoulis, D., Sinha, S.K., White, J.C.: Assay-dependent phytotoxicity of nanoparticles to plants. - Environ. Sci. Technol. 43: 9473–9479, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, R.R., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. - Plant Physiol. 65: 245–248, 1980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szabó, T., Németh, J., Dékány, I.: Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. - Colloid Surface. A: Physicochem. Eng. Aspects 230: 23–35, 2003.

    Article  CAS  Google Scholar 

  • Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K., Shinozaki, K.: Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. - Mol. Cell 41: 649–660, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Thwala, M., Musee, N., Sikhwivhilu, L., Wepener, V.: The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. - Environ. Sci. Process. Impact. 15: 1830–1843, 2013.

    Article  CAS  Google Scholar 

  • Tso, C.P., Zhung, C.M., Shih, Y.H., Tseng, Y.M., Wu, S.C., Doong, R.A.: Stability of metal oxide nanoparticles in aqueous solutions. - Water Sci. Technol. 61: 127–133, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Menzies, N.W., Lombi, E., McKenna, B.A., Johannessen, B., Glover, C.J., Kappen, P., Kopittke, P.M.: Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). - Environ. Sci. Technol. 47: 13822–13830, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.P., Jiang, P., Ma, Y., Geng, S.J., Wang, S.C., Shi, D.C.: Physiological strategies of sunflower exposed to salt or alkali stresses: restriction of ion transport in the cotyledon node zone and solute accumulation. - Agron. J. 107: 2181–2192, 2015.

    Article  CAS  Google Scholar 

  • Whiteside, M.D., Treseder, K.K., Atsatt, P.R.: The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. - Ecology 90: 100–108, 2009.

    Article  PubMed  Google Scholar 

  • Wild, E., Jones, K.C.: Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. - Environ. Sci. Technol. 43: 5290–5294, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.Z., Chen, J., Dou, R.Z., Gao, X., Mao, C.B., Wang, L.: Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). - Int. J. Environ. Res. Public Health 12: 15100–15109, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon, S.J., Kwak, J.I., Lee, W.M., Holden, P.A., An, Y.J.: Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study. - Ecotoxicol. Environ. Safety 100: 131–137, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L., Hernandez-Viezcas, J.A., Perlata-Videa, J.R., Bandyopadhyay, S., Peng, B., Munoz, B., Keller, A.A., Gardea-Torresdey, J.L.: ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. - Environ. Sci. Process. Impact. 15: 260–266, 2013a.

    Article  CAS  Google Scholar 

  • Zhao, L., Sun, Y., Hernandez-Viezcas, J.A., Servin, A.D., Hong, J., Niu, G., Peralta-Videa, J.R., Duarte-Gardea, M., Gardea-Torresdey, J.L.: Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. - J. Agr. Food Chem. 61: 11945–11951, 2013b.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wang.

Additional information

Acknowledgment: This work was supported by the Key Laboratory of Molecular Epigenetics of MOE (130014542) and the Programme for Introducing Talents to Universities (B07017).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.P., Li, Q.Q., Pei, Z.M. et al. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant 62, 801–808 (2018). https://doi.org/10.1007/s10535-018-0813-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-018-0813-4

Additional key words

Navigation