biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 62:45-54, 2018 | DOI: 10.1007/s10535-017-0763-2

Identification and functional analysis of anthocyanin biosynthesis genes in Phalaenopsis hybrids

L. M. Wang1, J. Zhang1, X. Y. Dong1, Z. Z. Fu1, H. Jiang1, H. C. Zhang1,*
1 Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, P.R. China

Phalaenopsis species are among the most popular potted flowers for their fascinating flowers. When their whole-genome sequencing was completed, they have become useful for studying the molecular mechanism of anthocyanin biosynthesis. Here, we identified 49 candidate anthocyanin synthetic genes in the Phalaenopsis genome. Our results showed that duplication events might contribute to the expansion of some gene families, such as the genes encoding chalcone synthase (PeCHS), flavonoid 3'-hydroxylase (PeF3'H), and myeloblastosis (PeMYB). To elucidate their functions in anthocyanin biosynthesis, we conducted a global expression analysis. We found that anthocyanin synthesis occurred during the very early flower development stage and that the flavanone 3-hydroxylase (F3H), F3'H, and dihydroflavonol 4-reductase (DFR) genes played key roles in this process. Over-expression of Phalaenopsis flavonoid 3',5'-hydroxylase (F3'5'H) in petunia showed that it had no function in anthocyanin production. Furthermore, global analysis of sequences and expression patterns show that the regulatory genes are relatively conserved and might be important in regulating anthocyanin synthesis through different combined expression patterns. To determine the functions of MYB2, 11, and 12, we over-expressed them in petunia and performed yeast two-hybrid analysis with anthocyanin (AN)1 and AN11. The MYB2 protein had strong activity in regulating anthocyanin biosynthesis and induced significant pigment accumulation in transgenic plant petals, whereas MYB11 and MYB12 had lower activities. Our work provided important improvement in the understanding of anthocyanin biosynthesis and established a foundation for floral colour breeding in Phalaenopsis through genetic engineering.

Keywords: comparative genomics; gene expression pattern; petunia; regulatory genes
Subjects: anthocyanidin biosynthesis; gene expression; floral organs; flower development; transgenic plants; phylogenetic tree

Received: November 30, 2016; Revised: June 25, 2017; Accepted: June 26, 2017; Published: January 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang, L.M., Zhang, J., Dong, X.Y., Fu, Z.Z., Jiang, H., & Zhang, H.C. (2018). Identification and functional analysis of anthocyanin biosynthesis genes in Phalaenopsis hybrids. Biologia plantarum62(1), 45-54. doi: 10.1007/s10535-017-0763-2
Download citation

Supplementary files

Download filebpl-201801-0005_S1.pdf

File size: 5.19 MB

References

  1. Albert, N.W., Davies, K.M., Lewis, D.H., Zhang, H., Montefiori, M., Brendolise, C., Boase, M.R., Ngo, H., Jameson, P.E., Schwinn, K.E.: A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. - Plant Cell 26: 962-980, 2014. Go to original source...
  2. Albert, N.W., Lewis, D.H., Zhang, H., Schwinn, K.E., Jameson, P.E., Davies, K.M.: Members of an R2R3-MYB transcription factor family in petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. - Plant J. 65: 771-784, 2011. Go to original source...
  3. Brouillard, R., Chassaing. S., Fougerousse. A.: Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? - Phytochemistry 64: 1179-1186, 2003. Go to original source...
  4. Buer, C.S., Imin, N., Djordjevic, M.A.: Flavonoids: new roles for old molecules. - J. integr. Plant Biol. 52: 98-111, 2010. Go to original source...
  5. Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.C., Liu, K.W., Chen, L.J., He, Y., Xu, Q., Bian, C., Zheng, Z., Sun, F., Liu, W., Hsiao, Y.Y., Pan, Z.J., Hsu, C.C., Yang, Y.P., Hsu, Y.C., Chuang, Y.C., Dievart, A., Dufayard, J.F., Xu, X., Wang, J.Y., Wang, J., Xiao, X.J., Zhao, X.M., Du, R., Zhang, G.Q., Wang, M., Su, Y.Y., Xie, G.C., Liu, G.H., Li, L.Q., Huang, L.Q., Luo, Y.B., Chen, H.H., Van de, Peer, Y., Liu, Z.J.: The genome sequence of the orchid Phalaenopsis equestris. - Nat. Genet. 47: 65-72, 2015. Go to original source...
  6. Carletti, G., Nervo, G., Cattivelli, L.: Flavonoids and melanins: a common strategy across two kingdoms. - Int. J. biol. Sci. 10: 1159-1170, 2014. Go to original source...
  7. Conner, A.J., Albert, N.W., Deroles, S.C.: Transformation and regeneration of petunia. - In: Greats, T., Strommer, J. (ed.): Evolutionary, Developmental and Physiological Genetics. Pp. 395-409. Springer, New York 2009. Go to original source...
  8. Consonni, G., Geuna, F., Gavazzi, G., Tonelli, C.: Molecular homology among members of the R gene family in maize. - Plant J. 3: 335-346, 1993. Go to original source...
  9. Consonni, G., Ronchi, A., Pilu, R., Gavazzi, G., Dellaporta, S.L., Tonelli, C.: Ectopic anthocyanin pigmentation in maize as a tool for defining interactions between homologous regulatory factors. - Mol. gen. Genet. 256: 265-276, 1997. Go to original source...
  10. D'Auria, J.C.: Acyltransferases in plants: a good time to be BAHD. - Curr. Opin. Plant Biol. 9: 331-340, 2006. Go to original source...
  11. Debeaujon, I., Peeters, A.J., Léon-Kloosterziel, K.M., Koornneef, M.: The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. - Plant Cell 13: 853-871, 2001. Go to original source...
  12. De Vetten, N., Quattrocchio, F., Mol, J., Koes, R.: The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. - Gene Dev. 1: 1422-1434, 1997. Go to original source...
  13. Dixon, R.A., Liu, C., Jun, J.H.: Metabolic engineering of anthocyanins and condensed tannins in plants. - Curr. Opin. Biotechnol. 24: 329-335, 2013. Go to original source...
  14. Faraco, M., Spelt, C., Bliek, M., Verweij, W., Hoshino, A., Espen, L., Prinsi, B., Jaarsma, R., Tarhan, E., De Boer, A.H., Di Sansebastiano, G.P., Koes, R., Quattrocchio F.M.: Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. - Cell Rep. 6: 32-43, 2014. Go to original source...
  15. Fournier-Level, A., Hugueney, P., Verriès, C., This, P., Ageorges, A.: Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). - BMC. Plant Biol. 11: 179, 2011. Go to original source...
  16. Hernandez, J.M., Feller, A., Morohashi, K., Frame, K., Grotewold, E.: The basic helix loop helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. - Proc. nat. Acad. Sci. USA 104: 17222-17227, 2007. Go to original source...
  17. Hsu, C.C., Chen, Y.Y., Tsai, W.C., Chen, W.H., Chen, H.H.: Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. - Plant Physiol. 168: 175-191, 2015. Go to original source...
  18. Johnson, C.S., Kolevski, B., Smyth, D.R.: TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. - Plant Cell 14: 1359-1375, 2002. Go to original source...
  19. Kitamura, S., Shikazono, N., Tanaka, A.: TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. - Plant J. 37: 104-114, 2004. Go to original source...
  20. Koes, R., Verweij, W., Quattrocchio, F.: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. - Trends Plant Sci. 10: 236-242, 2005. Go to original source...
  21. Luo, J., Nishiyama, Y., Fuell, C., Taguchi, G., Elliott, K., Hill, L., Tanaka, Y., Kitayama, M., Yamazaki, M., Bailey, P., Parr, A., Michael, A.J., Saito, K., Martin, C.: Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyaninacyl transferases from Arabidopsis thaliana. - Plant J. 50: 678-695, 2007. Go to original source...
  22. Maier, A., Schrader, A., Kokkelink, L., Falke, C., Welter, B., Iniesto, E., Rubio, V., Uhrig, J.F., Hülskamp, M., Hoecker, U.: Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. - Plant J. 74: 638-651, 2013. Go to original source...
  23. Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J.M., Debeaujon, I., Klein, M.: The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. - Plant Cell 19: 2023-2038, 2007. Go to original source...
  24. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V.: A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. - Nature 375: 397-400, 1995. Go to original source...
  25. Matsui, K., Umemura, Y., Ohme-Takagi, M.: AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. - Plant J. 55: 954-967, 2008. Go to original source...
  26. Matsumura, Y., Iwakawa, H., Machida, Y., Machida, C.: Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. - Plant J. 58: 525-537, 2009. Go to original source...
  27. Miyahara, T., Sakiyama, R., Ozeki, Y., Sasaki, N.: Acylglucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis. - J. Plant Physiol. 170: 619-624, 2013. Go to original source...
  28. Mueller, L.A., Goodman, C.D., Silady, R.A., Walbot, V.: AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. - Plant Physiol. 123: 1561-1570, 2000. Go to original source...
  29. Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M., Lepiniec, L.: The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. - Plant Cell 14: 2463-2479, 2002. Go to original source...
  30. Nishihara, M., Nakatsuka, T.: Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. - Biotechnol. Lett. 33: 433-441, 2011. Go to original source...
  31. Owens, D.K., Crosby, K.C., Runac, J., Howard, B.A., Winkel, B.S.J.: Biochemical and genetic characterization of Arabidopsis flavanone 3b-hydroxylase. - Plant Physiol. Biochem. 46: 833-843, 2008. Go to original source...
  32. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. - Nucl. Acids Res. 29: e45, 2001. Go to original source...
  33. Pourcel, L., Irani, N.G., Lu, Y., Riedl, K., Schwartz, S., Grotewold, E.: The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. - Mol. Plants 3: 78-90, 2010. Go to original source...
  34. Provenzano, S., Spelt, C., Hosokawa, S., Nakamura, N., Brugliera, F., Demelis, L., Geerke, D.P., Schubert, A., Tanaka, Y., Quattrocchio, F., Koes, R.: Genetic control and evolution of anthocyanin methylation. - Plant Physiol. 165: 962-977, 2014. Go to original source...
  35. Quattrocchio, F., Verweij, W., Kroon, A., Spelt, C., Mol, J., Koes, R.: PH4 of Petunia is an R2R3-MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. - Plant Cell 18: 1274-1291, 2006. Go to original source...
  36. Quattrocchio, F., Wing, J., Van der, Woude, K., Souer, E., De Vetten, N., Mol, J., Koes, R.: Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. - Plant Cell 11: 1433-1444, 1999. Go to original source...
  37. Ramsay, N.A., Glover, B.J.: MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. - Trends Plant Sci. 10: 63-70, 2005. Go to original source...
  38. Rubin, G., Tohge, T., Matsuda, F., Saito, K., Scheible, W.R.: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. - Plant Cell 21: 3567-3584, 2009. Go to original source...
  39. Sagasser, M., Lu, G.H., Hahlbrock, K., Weisshaar, B.: A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. - Gene Dev. 16: 138-149, 2002. Go to original source...
  40. Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge T, Fernie, A.R.: The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. - Plant Physiol. Biochem. 72: 21-34, 2013. Go to original source...
  41. Sasaki, N., Nishizaki, Y., Ozeki, Y., Miyahara, T.: The role of acyl-glucose in anthocyanin modification. - Molecules 19: 18747-18766, 2014. Go to original source...
  42. Spelt, C., Quattrocchio, F., Mol, J.N., Koes, R.: ANTHOCYANIN1 of petunia encodes a basic helix-loophelix protein that directly activates transcription of structural anthocyanin genes. - Plant Cell 12: 1619-1632, 2000. Go to original source...
  43. Spelt, C., Quattrocchio, F., Mol, J.N., Koes, R.: ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. - Plant Cell 14: 2121-2135, 2002. Go to original source...
  44. Stracke, R., Werber, M., Weisshaar, B.: The R2R3-MYB gene family in Arabidopsis thaliana. - Curr. Opin. Plant Biol. 4: 447-456, 2001. Go to original source...
  45. Takeda, K.: Blue metal complex pigments involved in blue flower color. - Proc. jap. Acad. Ser. B. phys. biol. Sci. 82: 142-154, 2006. Go to original source...
  46. Tanaka, Y., Brugliera, F.: Flower colour and cytochromes P450. - Phil. Trans. roy. Soc. London B. biol. Sci. 368: 20120432, 2013. Go to original source...
  47. Tanaka, T., Sasaki, N., Ohmiya, A.: Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. - Plant J. 54: 733-749, 2008. Go to original source...
  48. Verweij, W., Spelt C, Di San Sebastiano, G.P., Vermeer, J., Reale, L., Ferranti, F., Koes, R., Quattrocchio, F.: An H+ PATPase on the tonoplast determines vacuolar pH and flower colour. - Nat. cell. Biol. 10: 1456-62, 2008. Go to original source...
  49. Winkel-Shirley, B.: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. - Plant Physiol. 126: 485-493, 2001. Go to original source...
  50. Xu, W., Dubos, C., Lepiniec, L.: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. - Trends Plant Sci. 20: 176-185, 2015. Go to original source...
  51. Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., Wangwattana, B., Yamazaki, M., Saito, K.: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. - Plant J. 69: 154-167, 2012. Go to original source...
  52. Yoshida, K., Negishi, T.: The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. - Phytochemistry 94: 60-67, 2013. Go to original source...
  53. Yuan, Y.W., Sagawa, J.M., Young, R.C., Christensen, B.J., Bradshaw, H.D., Jr.: Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of Mimulus. - Genetics 194: 255-263, 2013. Go to original source...
  54. Zhang, H., Yin, W., Xia, X.: Calcineurin B-like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. - Plant Growth Regul. 56: 129-140, 2008. Go to original source...
  55. Zhang, W., Ning, G., Lv, H., Liao, L., Bao, M.: Single MYBtype transcription factor AtCAPRICE: a new efficient tool to engineer the production of anthocyanin in tobacco. - Biochem. biophys. Res. Commun. 388: 742-747, 2009. Go to original source...