biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 58:641-648, 2014 | DOI: 10.1007/s10535-014-0452-3

Molecular cloning and expression analyses of FaFT, FaTFL, and FaAP1 genes in cultivated strawberry: their correlation to flower bud formation

R. Nakajima1, S. Otagaki1, K. Yamada2, K. Shiratake1, S. Matsumoto1,*
1 Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
2 College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan

In this study, we cloned flowering-related genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) from domesticated octaploid strawberries (Fragaria × ananassa) and analyzed their expression patterns in cultivars Tochiotome and Akihime. The floral meristem generation was induced under the short day and low temperature (SDLT), but not under the long day and high temperature (LDHT). We found that FaFT1, which is an orthologue of the Arabidopsis floral activator FT, was highly expressed in leaves under LDHT but not expressed in leaves under SDLT. On the other hand, the expression of FaTFL2, which belongs to the TFL1 family of flowering repressing genes, decreased in crowns (stem tissue including meristem) under SDLT. These results suggest that FaTFL2, as opposed to FvTFL1 in wild diploid strawberry Fragaria vesca, is related to flowering of the cultivated strawberry. Moreover, the FaTFL2 expression might be regulated by temperature rather than by photoperiod. We demonstrated that a reduction of the FaTFL2 expression is a key signal for flowering in domesticated strawberries.

Keywords: flowering; Fragaria × ananassa; F. vesca; photoperiod; temperature
Subjects: flowering-related genes; amino acid sequences; phylogenetic tree; gene expression; circadian rhythm; flowering; strawberry

Received: October 17, 2013; Revised: February 7, 2014; Accepted: February 14, 2014; Published: December 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nakajima, R., Otagaki, S., Yamada, K., Shiratake, K., & Matsumoto, S. (2014). Molecular cloning and expression analyses of FaFT, FaTFL, and FaAP1 genes in cultivated strawberry: their correlation to flower bud formation. Biologia plantarum58(4), 641-648. doi: 10.1007/s10535-014-0452-3
Download citation

References

  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T.: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. - Science 309: 1052-1056, 2005. Go to original source...
  2. Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image processing with ImageJ. - Biophotonics Int. 11: 36-42, 2004.
  3. Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.Y., Henz, S.R., Brady, R.L., Weigel, D.: A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. - EMBO J. 25: 605-614, 2006. Go to original source...
  4. An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., Coupland, G.: CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. - Development 131: 3615-3626, 2004. Go to original source...
  5. Bradford, E., Hancock, J.F., Warner, R.M.: Interactions of temperature and photoperiod determine expression of repeat flowering in strawberry. - J. amer. Soc. hort. Sci. 135: 102-107, 2010 Go to original source...
  6. Conti, L., Bradley, D.: TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. - Plant Cell 19: 767-778, 2007. Go to original source...
  7. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., Coupland, G.: FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. - Science 316: 1030-1033, 2007. Go to original source...
  8. Hanano, S., Goto, K.: Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. - Plant Cell 23: 3172-3184, 2011. Go to original source...
  9. Hanzawa, Y., Money, T., Bradley, D.: A single amino acid converts a repressor to an activator of flowering. - Proc. nat. Acad. Sci. USA 102: 7748-7753, 2005. Go to original source...
  10. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., Shimamoto, K.: Adaptation of photoperiodic control pathways produces short-day flowering in rice. - Nature 422: 719-722, 2003. Go to original source...
  11. Hayama, R., Agashe, B., Luley, E., King, R., Coupland, G.: A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. - Plant Cell 19: 2988-3000, 2007. Go to original source...
  12. Iwata, H., Gaston, A., Remay, A., Thouroude, T., Jeauffre, J., Kawamura, K., Oyant, L.H., Araki, T., Denoyes, B., Foucher, F.: The TFL1 homologue KSN is a regulator of continuous floering in rose and strawberry. - Plant J. 69: 116-125, 2012. Go to original source...
  13. Jaeger, K.E., Wigge, P.A.: FT protein acts as a long-range signal in Arabidopsis. - Curr. Biol. 17: 1050-1054, 2007. Go to original source...
  14. Kong, F., Liu, B., Xia, Z., Sato, S., Kim, B.M., Watanabe, S., Yamada, T., Tabata, S., Kanazawa, A., Harada, K., Abe, J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. - Plant Physiol. 154: 1220-1231, 2010. Go to original source...
  15. Koskela, E.A., Mouhu, K., Albani, M.C., Kurokura, T., Rantanen, M., Sargent, D.J., Battey, N.H., Coupland, G., Elomaa, P., Hytönen, T.: Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. - Plant Physiol. 159: 1043-1054, 2012. Go to original source...
  16. Mimida, N., Li, J., Zhang, C., Moriya, S., Moriya-Tanaka, Y., Iwanami, H., Honda, C., Oshino, H., Takagishi, K., Suzuki, A., Komori, S., Wada, M.: Divergence of TERMINAL FLOWER1-like genes in Rosaceae. - Biol. Plant. 56: 465-472, 2012. Go to original source...
  17. Mouhu, K., Hytönen, T., Folta, K., Rantanen, M., Paulin, L., Auvinen, P., Elomaa, P.: Identification of flowering genes in strawberry, a perennial SD plant. - BMC Plant Biol. 9: 122, 2009. Go to original source...
  18. Ratcliffe, O.J., Bradley, D.J., Coen, E.S.: Separation of shoot and floral identity in Arabidopsis. - Development 126: 1109-1120, 1999. Go to original source...
  19. Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S.P., Burns, P., Davis, T.M., Slovin, J.P., Bassil, N., Hellens, R.P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O.R., Jensen, R.V., Allan, A.C., Michael, T.P., Setubal, J.C., Celton, J.-M., Rees, D.J.G., Williams, K.P., Holt, S.H., Rojas, J.J.R., Chatterjee, M., Liu, B., Silva, H., Meisel, L., Adato, A., Filichkin, S.A., Troggio, M., Viola, R., Ashman, T.-L., Wang, H., Dharmawardhana, P., Elser, J., Raja, R., Priest, H.D., Bryant, D.W., Jr., Fox, S.E., Givan, S.A., Wilhelm, L.J., Naithani, S., Christoffels, A., Salama, D.Y., Carter, J., Girona, E.L., Zdepski, A., Wang, W., Kerstetter, R.A., Schwab, W., Korban, S.S., Davik, J., Monfort, A., Denoyes-Rothan, B., Arus, P., Mittler, R., Flinn, B., Aharoni, A., Bennetzen, J.L., Salzberg, S.L., Dickerman, A.W., Velasco, R., Borodovsky, M., Veilleux, R.E., Folta, K.M.: The genome of woodland strawberry (Fragaria vesca). - Nat. Genet. 43: 109-116, 2011. Go to original source...
  20. Sønsteby, A., Nes, A.: Short days and temperature effects on growth and flowering in strawberry (Fragaria × ananassa Duch.). - J. hort. Sci. Biotechnol. 73: 730-736, 1998. Go to original source...
  21. Sønsteby, A., Heide, O.M.: Long-day control of flowering in everbearing strawberries. - J. hort. Sci. Biotechnol. 82: 875-884, 2007. Go to original source...
  22. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., Shimamoto, K.: Hd3a protein is a mobile flowering signal in rice. - Science 316: 1033-1036, 2007. Go to original source...
  23. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., Shimamoto, K.: 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. - Nature 476: 332-335, 2011. Go to original source...
  24. Taylor, D.R.: The physiology of flowering in strawberry. - Acta Hort. 567: 245-251, 2002. Go to original source...
  25. Turck, F., Fornara, F., Coupland, G.: Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. - Annu. Rev. Plant Biol. 59: 573-594, 2008. Go to original source...
  26. Turnbull, C.: Long-distance regulation of flowering time. - J. exp. Bot. 62: 4399-4413, 2011. Go to original source...
  27. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G.: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. - Science 303: 1003-1006, 2004 Go to original source...
  28. Verheul, M.J., Sonsteby, A., Grimstad, S.O.: Interaction of photoperiod, temperature, duration of short-day treatment and plant age on flowering of Fragaria × ananassa Duch. cv. Korona. - Sci. Hort. 107: 164-170, 2006. Go to original source...
  29. Wan, C.-Y., Wilkins, T.A.: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). - Anal. Biochem. 223: 7-12, 1994. Go to original source...
  30. Weebadde, C.K., Wang, D., Finn, C.E., Lewers, K.S., Luby, J.J., Bushakra, J., Sjulin, T.M., Hancock, J.F.: Using a linkage mapping approach to identify QTL for day-neutrality in the octaploid strawberry. - Plant Breed. 127: 94-101, 2008. Go to original source...
  31. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D.: Integration of spatial and temporal information during floral induction in Arabidopsis. - Science 309: 1056-1059, 2005. Go to original source...
  32. Wigge, P.A.: FT, a mobile developmental signal in plants. - Curr. Biol. 21: R374-R378, 2011. Go to original source...
  33. Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. - Nature 401: 173-177, 1999. Go to original source...