biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 54:677-683, 2010 | DOI: 10.1007/s10535-010-0120-1

Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress

I. Tari1,*, G. Kiss2, A. K. Deér2, J. Csiszár1, L. Erdei1, Á. Gallé1, K. Gémes1, F. Horváth1, P. Poór1, Á. Szepesi1, L. M. Simon2
1 Department of Plant Biology, University of Szeged, Szeged, Hungary
2 Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary

Increased aldose reductase (ALR) activities were detected in the leaf tissues of tomato plants grown for 3 weeks in culture medium containing 10-7 or 10-4 M salicylic acid (SA), and in the roots after the 10-4 M SA pretreatment. The ALR activity changed in parallel with the sorbitol content in the leaves of the SA-treated plants. Salt stress elicited by 100 mM NaCl enhanced the accumulation of sorbitol in the leaves of control plants and as compared with the untreated control the sorbitol content in the SA-pretreated leaves remained elevated under salt stress. DEAE cellulose anionexchange column purification of the protein precipitated with 80 % (NH4)2SO4 revealed two enzyme fractions with ALR activity in both the leaf and the root tissues. The fraction of the leaf extract that was not bound to the column reacted with glucose and glucose-6-P as substrates, whereas glucose was not a substrate for the bound fraction or for root isoenzymes. The root enzyme was less sensitive to salt treatment: 50 mM NaCl caused 30 % inhibition in the leaf extract, whereas the enzyme activity of the root extract was not affected. It is suggested that increased ALR activity and sorbitol synthesis in the leaves of SA-treated tomato plants may result in an improved salt stress tolerance.

Keywords: alterations of ALR activity in vitro; enzyme purification; Lycopersicon esculentum; NaCl
Subjects: Lycopersicon esculentum

Received: January 25, 2009; Accepted: October 17, 2009; Published: December 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tari, I., Kiss, G., Deér, A.K., Csiszár, J., Erdei, L., Gallé, Á., ... Simon, L.M. (2010). Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biologia plantarum54(4), 677-683. doi: 10.1007/s10535-010-0120-1
Download citation

References

  1. Bieleski, R.L.: Sugar alcohols. - In: Loewus, M.W., Tanner, W. (ed.): Encyclopedia of Plant Physiology, N.S., Vol. 13A: Plant Carbohydrates. Pp. 158-192. Springer-Verlag, Berlin 1982. Go to original source...
  2. Conde, C., Silva, P., Agasse, A., Lemoine, R., Delrot, S., Tavares, R., Geros, H.: Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. - Plant Cell Physiol. 48: 42-53, 2007. Go to original source...
  3. Deguchi, M., Bennett, A.B., Yamaki, S., Yamada, K., Kanahama, K., Kanayama, Y.: An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. - Plant Cell Environ. 29: 1980-1988, 2006. Go to original source...
  4. Fricke, W.: Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. - Planta 219: 515-525, 2004. Go to original source...
  5. He, Y., Zhu, Z.J.: Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. - Biol. Plant. 52: 792-795, 2008. Go to original source...
  6. Horváth, E., Szalai, G., Janda, T.: Induction of abiotic stress tolerance by salicylic acid signaling. - J. Plant Growth Regul. 26: 290-300, 2007. Go to original source...
  7. Kanayama, Y.: Physiological roles of polyols in horticultural crops. - J. jap. Soc. hort. Sci. 78: 158-168, 2009. Go to original source...
  8. Kolb, N.A., Hunsaker, L.A., Van der Jagt, D.L.: Aldose reductase catalyzed reduction of acrolein: implication in cyclophosphamide toxicity. - Mol. Pharmacol. 45: 797-801, 1994.
  9. Loewus, F.A., Loewus, M.W.: Myo-inositol: its biosynthesis and metabolism. - Annu. Rev. Plant Physiol. 34: 137-161, 1983. Go to original source...
  10. Loscher, W.H.: Physiology and metabolism of sugar alcohols in higher plants. - Physiol. Plant. 70: 533-557, 1987. Go to original source...
  11. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. - J. biol. Chem. 193: 265-275, 1951. Go to original source...
  12. Meng, Y., Xu, X., Khanizadeh, S., Zhang, M., Wang, Q., Han, Z.: The contribution of abscisic acid to sorbitol accumulation in drought-stressed Malus hupehensis. - J. Food Agr. Environ. 6: 319-326, 2008.
  13. Moing, A., Carbonne, F., Zipperlin, B., Svanella, L., Gaudillere, J.P.: Phloem loading in peach: symplastic or apoplastic? - Physiol. Plant. 101: 489-496, 1997. Go to original source...
  14. Mundree, S.G., Whittaker, A., Thomson, J.A., Farrant, J.M.: An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. - Planta 211: 693-700, 2000. Go to original source...
  15. Mutlu, S., Atici, Ö., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. - Biol. Plant. 53: 334-338, 2009. Go to original source...
  16. Nadwodnik, J., Lohaus, G.: Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. - Planta 227: 1079-1089, 2008. Go to original source...
  17. Ohta, K., Moriguchi, R., Kanahama, K., Yamaki, S., Kanayama, Y.: Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant. - Phytochemistry 66: 2822-2828, 2005. Go to original source...
  18. Oberschall, A., Deák, M., Török, K., Sass, L., Vass, I., Kovács, I., Fehér, A., Dudits, D., Horváth, V.G.: A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress. - Plant J. 24: 437-446, 2000. Go to original source...
  19. Oura, K.R., Yamada, K., Shiratake, K., Yamaki, S.: Purification and characterization of a NAD-dependent sorbitol dehydrogenase from Japanese pear fruit. - Phytochemistry 54: 567-572, 2000. Go to original source...
  20. Poór, P., Gémes, K., Szepesi, Á., Horváth, F., Simon, M., Tari, I.: Salicylic acid treatment via the rooting medium interferes with the stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato and decreases the harmful effects of subsequent salt stress. - Plant Biol. (DOI: 10.1111/j.1438-8677.2010.00344.x), 2010. Go to original source...
  21. Ramana, K.V., Dixit, B.L., Srivastava, S., Balendiran, G.K., Srivastava, S.K., Bhatnagar, A.: Selective recognition of glutathiolated aldehydes by aldose reductase. - Biochemistry 39: 12172-12180, 2000. Go to original source...
  22. Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R.: Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. - Plant Physiol. 133: 84-99, 2003. Go to original source...
  23. Schauer, N., Zamir, D., Fernie, A.R.: Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. - J. exp. Bot. 56: 297-307, 2005. Go to original source...
  24. Shen, B., Jensen, R.G., Bohnert, H.J.: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. - Plant Physiol. 113: 1177-1183, 1997. Go to original source...
  25. Sheveleva, E.V., Marquez, S., Chmara, W., Zegeer, A., Jensen, R.G., Bohnert, H.J.: Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. - Plant Physiol. 117: 831-839, 1998. Go to original source...
  26. ©ircelj, H., Tausz, M., Grill, D., Batič, F.: Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. - Sci. Hort. 113: 362-369, 2007. Go to original source...
  27. Sree, K.B., Rajendrakumar, C.S.V., Reddy, A.R.: Aldose reductase in rice (Oryza sativa L.): stress response and developmental specificity. - Plant Sci. 160: 149-157, 2000. Go to original source...
  28. Szalai, G., Tari, I., Janda, T., Pestenácz, A., Páldi, E.: Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. - Biol. Plant. 43:637-640, 2000. Go to original source...
  29. Szepesi, Á., Csiszár, J., Bajkán, Sz., Gémes, K., Horváth, F., Erdei, L., Deér, A., Simon., L.M., Tari, I.: Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. - Acta biol. Szeged 49:123-125, 2005.
  30. Szepesi, Á., Csiszár, J., Gallé, Á., Gémes, K., Poór P., Tari I.: Effects of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum Mill. L.) salt stress tolerance: changes in glutathione S-transferase activities and anthocyanin contents. - Acta agron. hung. 58: 129-138, 2008. Go to original source...
  31. Szepesi, Á., Csiszár, J., Gémes, K., Horváth, E., Horváth, F., Simon, L.M., Tari, I.: Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content of leaves without toxicity symptoms in Solanum lycopersicum L. - J. Plant Physiol. 166: 914-925, 2009. Go to original source...
  32. Tari, I., Csiszár, J., Szalai, G., Horváth, F., Pécsváradi, A., Kiss, G., Szepesi, Á., Szabó, M., Erdei, L.: Acclimation of tomato plants to salinity stress after salicylic acid pre-treatment. - Acta biol. Szeged 46: 55-56, 2002.
  33. Wang, Z., Quebedeaux, B., Stutte, G.W.: Partition of [14C]glucose into sorbitol and other carbohydrates in apple under water stress. - Aust. J. Plant Physiol. 23: 245-251, 1996. Go to original source...
  34. Zhou, R., Cheng, L., Wayne, R.: Purification and characterization of sorbitol-6-phosphate phosphatase from apple leaves. - Plant Sci. 165: 227-232, 2003. Go to original source...