Skip to main content
Log in

Studies on reaction of glutathionylcobalamin with hypochlorite. Evidence of protective action of glutathionyl-ligand against corrin modification by hypochlorite

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Glutathionylcobalamin (GSCbl), a tight complex of glutathione (GSH) with cobalamin(III), is readily oxidized to aquacobalamin by hypochlorite. Corrin macrocycle remains unmodified in the presence of threefold excess of hypochlorite, whereas aqua- and cyanocobalamins are partially transformed to chlorinated species under the same conditions. The suggested mechanism of reaction between GSCbl and hypochlorite involves subsequent oxidation of thiol and amino groups and dissociation of oxidized glutathione from Co(III)-ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Abbreviations

Cbl:

Cobalamin

DMBI:

5,6-Dimethylbenzimidazole

GSH:

Glutathione

GSCbl:

Glutathionylcobalamin

MALDI-MS:

Matrix assisted laser desorbtion/ionization-mass spectrometry

References

  • Abu-Soud HM, Maitra D, Byun J, Souza CEA, Banerjee J, Saed GM, Diamond MP, Andreana PR, Pennathur S (2012) The reaction of HOCl and cyanocobalamin: corrin destruction and the liberation of cyanogen chloride. Free Radic Biol Med 52:616–625

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian PN, Gould ES (1984) Electron transfer. 70. Reductions of oxyhalogens by vitamin B12r (Cob(II)alamin). Inorg Chem 23:3689–3693

    Article  CAS  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  CAS  PubMed  Google Scholar 

  • Barker HA, Smyth RD, Weissbach H, Munch-Petersen A, Toohey JI, Ladd JN, Volcani BE, Wilson RM (1960) Assay, purification, and properties of the adenylocobamide coenzyme. J Biol Chem 235:181–190

    CAS  PubMed  Google Scholar 

  • Birch CS, Brasch NE, McCaddon A, Williams JHH (2009) A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 47:184–188

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Qu Y, Kwon D, Zhang H, Cid CA, Aryanfar A, Hoffmann MR (2014) Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ Sci Technol 48:2377–2384

    Article  CAS  PubMed  Google Scholar 

  • Dassanayake RS, Farhath MM, Shelley JT, Basu S, Brasch NE (2016) Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: evidence for one electron oxidation of the metal center and corrin ring destruction. J Inorg Biochem 163:81–87

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48:8–19

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1199–1234

    Article  CAS  PubMed  Google Scholar 

  • Dereven’kov IA, Salnikov DS, Silaghi-Dumitrescu R, Makarov SV, Koifman OI (2016a) Redox chemistry of cobalamin and its derivatives. Coord Chem Rev 309:68–83

    Article  Google Scholar 

  • Dereven’kov IA, Bui Thi TT, Salnikov DS, Makarov SV (2016b) Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid. Russ J Phys Chem A 90:596–600

    Article  Google Scholar 

  • Dereven’kov IA, Shpagilev NI, Valkai L, Salnikov DS, Horváth AK, Makarov SV (2017a) Reactions of aquacobalamin and cob(II)alamin with chlorite and chlorine dioxide. J Biol Inorg Chem 22:453–459

    Article  PubMed  Google Scholar 

  • Dereven’kov IA, Hannibal L, Dürr M, Salnikov DS, Bui Thi TT, Makarov SV, Koifman OI, Ivanović-Burmazović I (2017b) Redox turnover of organometallic B12 cofactors recycles vitamin C: sulfur assisted reduction of dehydroascorbic acid by cob(II)alamin. J Organomet Chem 839:53–59

    Article  Google Scholar 

  • Giedyk M, Goliszewska K, Gryko D (2015) Vitamin B12 catalysed reactions. Chem Soc Rev 44:3391–3404

    Article  CAS  PubMed  Google Scholar 

  • Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM (2008) Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med 44:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Hannibal L, Axhemi A, Glushchenko AV, Moreira ES, Brasch NE, Jacobsen DW (2008) Accurate assessment and identification of naturally occurring cellular cobalamins. Clin Chem Lab Med 46:1739–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannibal L, Smith CA, Jacobsen DW (2010) The X-ray crystal structure of glutathionylcobalamin revealed. Inorg Chem 21:9921–9927

    Article  Google Scholar 

  • Harwood DT, Kettle AJ, Winterbourn CC (2006) Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC–MS/MS method. Biochem J 399:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood DT, Nimmo SL, Kettle AJ, Winterbourn CC, Ashby MT (2008) Molecular structure and dynamic properties of a sulfonamide derivative of glutathione that is produced under conditions of oxidative stress by hypochlorous acid. Chem Res Toxicol 21:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Harwood DT, Kettle AJ, Brennan S, Winterbourn CC (2009) Simultaneous determination of reduced glutathione, glutathione disulphide and glutathione sulphonamide in cells and physiological fluids by isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B 877:3393–3399

    Article  CAS  Google Scholar 

  • Hu Y, Xie G, Stanbury DM (2017) Oxidations at sulfur centers by aqueous hypochlorous acid and hypochlorite: Cl+ versus O atom transfer. Inorg Chem 56:4047–4056

    Article  CAS  PubMed  Google Scholar 

  • Kambo A, Sharma VS, Casteel DE, Woods VL Jr, Pilz RB, Boss GR (2005) Nitric oxide inhibits mammalian methylmalonyl-CoA mutase. J Biol Chem 280:10073–10082

    Article  CAS  PubMed  Google Scholar 

  • Kormányos B, Nagypál I, Peintler G, Horváth AK (2008) Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid. Inorg Chem 47:7914–7920

    Article  PubMed  Google Scholar 

  • Kräutler B (2005) Vitamin B12: chemistry and biochemistry. Biochem Soc Trans 33:806–810

    Article  PubMed  Google Scholar 

  • Maitra D, Ali I, Abdulridha RM, Shaeib F, Khan SN, Saed GM, Pennathur S, Abu-Soud HM (2014) Kinetic studies on the reaction between dicyanocobinamide and hypochlorous acid. PLoS ONE. doi:10.1371/journal.pone.0110595

    Google Scholar 

  • Malech HL, Gallin JI (1987) Current concepts: immunology. Neutrophils in human diseases. N Engl J Med 317:687–694

    Article  CAS  PubMed  Google Scholar 

  • Nagy P, Ashby MT (2007a) Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 129:14082–14091

    Article  CAS  PubMed  Google Scholar 

  • Nagy P, Ashby MT (2007b) Kinetics and mechanism of the oxidation of the glutathione dimer by hypochlorous acid and catalytic reduction of the chloroamine product by glutathione reductase. Chem Res Toxicol 20:79–87

    Article  CAS  PubMed  Google Scholar 

  • Nicolau A, Kenyon SH, Gibbons JM, Ast T, Gibbons WA (1996) In vitro inactivation of mammalian methionine synthase by nitric oxide. Eur J Clin Invest 26:167–170

    Article  Google Scholar 

  • Nygard O, Vollset SE, Refsum H, Brattstrom L, Ueland PM (1999) Total homocysteine and cardiovascular disease. J Intern Med 246:425–454

    Article  CAS  PubMed  Google Scholar 

  • Pattison D, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    Article  CAS  PubMed  Google Scholar 

  • Pennathur S, Heinecke JW (2007) Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 9:955–969

    Article  CAS  PubMed  Google Scholar 

  • Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 30:572–579

    Article  CAS  PubMed  Google Scholar 

  • Peskin AV, Turner R, Maghzal GJ, Winterbourn CC, Kettle AJ (2009) Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 48:10175–10182

    Article  CAS  PubMed  Google Scholar 

  • Pullar JM, Vissers MC, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50:259–266

    Article  CAS  PubMed  Google Scholar 

  • Pullar JM, Vissers MCM, Winterbourn CC (2001) Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. J Biol Chem 276:22120–22125

    Article  CAS  PubMed  Google Scholar 

  • Schumacher LA, Mukherjee R, Brown JM, Subedi H, Brasch NE (2011) Kinetic studies on the decomposition of thiolatocobalamins in acidic solution. Eur J Inorg Chem 4717–4720

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  • Storkey C, Davies MJ, Pattison DI (2014) Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic Biol Med 73:60–66

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Moreira E, Hannibal L, Smith CA, Chavez RA, Jacobsen DW, Brasch NE (2006) A simple, convenient method to synthesize cobalamins: synthesis of homocysteinylcobalamin, N-acetylcysteinylcobalamin,2-N-acetylamino-2-carbomethoxyethanethiolatocobalamin, sulfitocobalamin and nitrocobalamin. Dalton Trans 28:5269–5277

    Article  Google Scholar 

  • Takahashi-Iniguez T, Garcia-Arellano H, Trujillo-Roldan MA, Flores ME (2011) Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biophys Res Commun 404:443–447

    Article  CAS  Google Scholar 

  • Varela-Moreiras G, Murphy MM, Scott JM (2009) Cobalamin, folic acid, and homocysteine. Nutr Rev 67:S69–S72

    Article  PubMed  Google Scholar 

  • Wagner F, Bernhauer K (1964) New aspects of the structure of corrinoid coenzymes. Ann N Y Acad Sci 112:580–589

    Article  CAS  PubMed  Google Scholar 

  • Wheatley C (2007a) The return of the Scarlet Pimpernel: cobalamin in inflammation II—cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and as needed, selectively inhibit iNOS and nNOS. J Nutr Environ Med 16:181–211

    Article  CAS  PubMed  Google Scholar 

  • Wheatley C (2007b) Cobalamin in inflammation III—glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases. J Nutr Environ Med 16:212–226

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC (1985) Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 840:204–210

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, Brennan SO (1997) Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem J 326:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolak M, Zahl A, Schneppensieper T, Stochel G, van Eldik R (2001) Kinetics and mechanism of the reversible binding of nitric oxide to reduced cobalamin B12r (cob(II)alamin). J Am Chem Soc 123:9780–9791

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Cregan AG, Berben LA, Brasch NE (2004) Studies on the formation of glutathionylcobalamin: any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin. Inorg Chem 43:6848–6857

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Birke RL (2002) The reaction of nitric oxide with glutathionylcobalamin. J Am Chem Soc 124:9066–9067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Agreement # 14-23-00204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia A. Dereven’kov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereven’kov, I.A., Makarov, S.V., Shpagilev, N.I. et al. Studies on reaction of glutathionylcobalamin with hypochlorite. Evidence of protective action of glutathionyl-ligand against corrin modification by hypochlorite. Biometals 30, 757–764 (2017). https://doi.org/10.1007/s10534-017-0044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0044-8

Keywords

Navigation