Skip to main content

Advertisement

Log in

Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorders, characterized by serious oxidative and neurotoxic effects with similarities to Parkinson’s disease. The aim of this study was to investigate the potential effects of silymarin (SIL), an antioxidant flavonoid, against manganese chloride induced neurotoxicity both in vivo (cerebral cortex of rats) and in vitro (Neuro2a cells). Twenty-eight male Wistar rats were randomly divided into four groups: the first group (C) received vehicle solution (i.p.) served as controls. The second group (Mn) received orally manganese chloride (20 mg/ml). The third group (Mn + SIL) received both Mn and SIL. The fourth group (SIL) received only SIL (100 mg/kg/day, i.p.). Animals exposed to Manganese chloride showed a significant increase in TBARS, NO, AOPP and PCO levels in cerebral cortex. These changes were accompanied by a decrease of enzymatic (SOD, CAT, GPx) and non-enzymatic (GSH, NpSH, Vit C) antioxidants. Co-administration of silymarin to Mn-treated rats significantly improved antioxidant enzyme activities and attenuated oxidative damages observed in brain tissue. The potential effect of SIL to prevent Mn induced neurotoxicity was also reflected by the microscopic study, indicative of its neuroprotective effects. We concluded that silymarin possesses neuroprotective potential, thus validating its use in alleviating manganese-induced neurodegenerative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W Jr (1995) Manganese-induced reactive oxygen species: comparison between Mn2+ and Mn3+. Neurodegeneration 4:329–334

    Article  CAS  PubMed  Google Scholar 

  • Archibald FS, Tyree C (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256:638–650

    Article  CAS  PubMed  Google Scholar 

  • Aschner M (1997) Manganese neurotoxicity and oxidative damage. In: Conner JR (ed) Metals and oxidative damage in neurological disorders. Plenum, New York, pp 77–93

    Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26(4–5):353–362

    Article  CAS  PubMed  Google Scholar 

  • Barbeau A (1984) Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology 5(1):13–35

    CAS  PubMed  Google Scholar 

  • Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536

    Article  CAS  PubMed  Google Scholar 

  • Belpoggi F, Soffritti M, Guarino M, Lambertini L, Cevolani D, Maltoni C (2002) Results of long-term experimental studies on the carcinogenicity of ethylene-bis-dithiocarbamate (Mancozeb) in rats. Ann NY Acad Sci 982:123–136

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  CAS  PubMed  Google Scholar 

  • Bhatia N, Zhao J, Wolf DM, Agarwal R (1999) Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin. Cancer Lett 147(1/2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse of Huntington’s disease. J Neurochem 79:1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Brouillet EP, Shinobu L, Mc Garvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Ammassari-Teule M, Gubellini P, Sancesario G, Morello M, Centonze D, Marfia GA, Saulle E, Passino E, Picconi B, Bernardi G (2001) A synaptic mechanism underlying the behavioural abnormalities induced by manganese intoxication. Neurobiol Dis 8:419–432

    Article  CAS  PubMed  Google Scholar 

  • Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann NY Acad Sci 1012:115128

    Google Scholar 

  • Dos Santos AP, Milatovic D, Au C, Yin Z, Batoreu MC, Aschner M (2010) Rat brain endothelial cells are a target of manganese toxicity. Brain Res 1326:152–161

    Article  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Ezymol 86:421–431

    Article  Google Scholar 

  • Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JC (2006) Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 31:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GE, Courtney KD, Andersen JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Aschner M (2007) Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol Sci 97(2):459–466

    Article  CAS  PubMed  Google Scholar 

  • Evans P, Lyras L, Halliwell B (1999) Measurement of protein carbonyls in human brain tissue. Methods Enzymol 300:145–156

    Article  CAS  PubMed  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  CAS  PubMed  Google Scholar 

  • Fetoui H, Mahjoubi-Samet A, Jammousi K, Ellouze F, Guermazi F, Zeghal N (2006) Energy restriction in pregnant and lactating rats lowers bone mass of their progeny. Nutr Res 26:421–426

    Article  CAS  Google Scholar 

  • Fetoui H, Mahjoubi-Samet A, Jamoussi K, Ayadi F, Ellouze F, Zeghal N (2007) Food restriction in pregnant and lactating rats induces anemia and increases plasma lipid peroxidation in their progeny. Nutr Res 27:788–793

    Article  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • Fu H, Lin M, Muroya Y, Hata K, Katsumura Y, Yokoya A, Shikazono N, Hatano Y (2009) Free radical scavenging reactions and antioxidant activities of silybin: mechanistic aspects and pulse radiolytic studies. Free Radic Res 43(9):887–897

    Article  CAS  PubMed  Google Scholar 

  • Galvani P, Fumagalli P, Santagostino A (1995) Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharm Sci 293(4):377–383

    Article  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J 266(2):329–334

    CAS  PubMed  Google Scholar 

  • Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, Lonnerdal B (2005) Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, sow formula or soy formula with added manganese. Neurotoxicol Teratol 27:615–627

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Gunter TE, Gavin CE, Aschner M, Gunter KK (2006) Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 27:765–776

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Kannan GM, Sharma M, Flora SJS (2005) Therapeutic effects of Moringa oleifera on arsenic-induced toxicity in rats. Environ Toxicol Pharmacol 20:456–464

    Article  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Antioxidant defense enzymes. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, pp 107–146

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine, 4th edn. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  • HaMai D, Bondy SC (2004) Oxidative basis of manganese neurotoxicity. Ann NY Acad Sci 1012:129–141

    Article  CAS  PubMed  Google Scholar 

  • HaMai D, Campbell A, Bondy SC (2001) Modulation of oxidative events by multivalent manganese complexes in brain tissue. Free Radic Biol Med 31:763–768

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Normandin L, Norenberg MD, Kennedy G, Yi JH (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396(3):167–171

    Article  CAS  PubMed  Google Scholar 

  • Hunt JV, Smith CC, Wolff SP (1990) Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39(11):1420–1424

    Article  CAS  PubMed  Google Scholar 

  • Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JBT (2001) Diphenyl diselenide and ascorbic changes deposition of selenium and ascorbic in liver and brain of mice. Pharmacol Toxicol 88:119–125

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  • Krieger D, Krieger S, Jansen O, Gass P, Theilmann L, Lichtnecker H (1995) Manganese and chronic hepatic encephalopathy. Lancet 346:270–274

    Article  CAS  PubMed  Google Scholar 

  • Kwik-Uribe CL, Golub MS, Keen CL (2000) Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. J Nutr 130:2040–2048

    CAS  PubMed  Google Scholar 

  • Lander F, Kristiansen J, Lauritsen JM (1999) Manganese exposure in foundry furnacemen and scrap recycling workers. Int Arch Occup Environ Health 72:546–550

    Article  CAS  PubMed  Google Scholar 

  • Layer PG, Alber R, Sporns O (1987) Quantitative development and molecular forms of acetylcholinesterase and butyrylcholinesterase during morphogenesis and synaptogenesis of chick brain and retina. J Neurochem 49(1):175–182

    Article  CAS  PubMed  Google Scholar 

  • Layrargues GP, Rose C, Spahr L, Zayed J, Normandin L, Butterworth RF (1998) Role of manganese in the pathogenesis of portal-systemic encephalopathy. Metab Brain Dis 13:311–317

    Article  CAS  PubMed  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminal enhanced chemiluminescence measurements. Free Radical Biol Med 18:153–158

    Article  CAS  Google Scholar 

  • Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB (1999) Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 163(12):6800–6809

    CAS  PubMed  Google Scholar 

  • Mansour HH, Hafez HF, Fahmy NM (2006) Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol 39:656–661

    CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Marreilha dos Santos AP, Santos D, Au C, Milatovic D, Aschner M, Batoréu MC (2008) Antioxidants prevent the cytotoxicity of manganese in RBE4 cells. Brain Res 1236:200–205

    Article  CAS  PubMed  Google Scholar 

  • Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  Google Scholar 

  • Mergler D, Baldwin M, Bélanger S, Larribe F, Beuter A, Bowler R, Panisset M, Edwards R, de Geoffroy A, Sassine MP, Hudnell K (1999) Manganese neurotoxicity, a continuum of dysfunction: results from a community based study. Neurotoxicology 20:327–342

    CAS  PubMed  Google Scholar 

  • Migheli A, Piva R, Casolino S, Atzori C, Dlouhy SR, Ghetti B (1999) A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am J Pathol 155:365–373

    CAS  PubMed  Google Scholar 

  • Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98(1):198–205

    Article  CAS  PubMed  Google Scholar 

  • Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Bernd A, Sempere JM, Díaz-Alperi J, Ramírez A (2002) The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 34:37–46

    Article  CAS  PubMed  Google Scholar 

  • Morello M, Zatta P, Zambenedetti P, Martorana A, D’Angelo V, Melchiorri G, Bernardi G, Sancesario G (2007) Manganese intoxication decreases the expression of manganoproteins in the rat basal ganglia: an immunohistochemical study. Brain Res Bull 74:406–415

    Article  CAS  PubMed  Google Scholar 

  • Nencini C, Giorgi G, Micheli L (2007) Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine 14:129–135

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  CAS  PubMed  Google Scholar 

  • Ou P, Wolff SP (1996) A discontinuous method for catalase determination at near physiological concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J Biochem Biophys Methods 31:59–67

    Article  CAS  PubMed  Google Scholar 

  • Pamphlett R, McQuilty R, Zarkos K (2001) Blood levels of toxic and essential metals in motor neuron disease. Neurotoxicology 22:401–410

    Article  CAS  PubMed  Google Scholar 

  • Pine M, Lee B, Dearth R, Hiney JK, Dees WL (2005) Manganese acts centrally to stimulate luteinizing hormone secretion: a potential influence on female pubertal development. Toxicol Sci 85(2):880–885

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran K, Chapman GD, Gunasekar PG (2009) BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity. NeuroToxicology 30(3):414–422

    Article  CAS  PubMed  Google Scholar 

  • Rastogi R, Srivastava AK, Srivastava M, Rastogi AK (2000) Hepatocurative effect of picroliv and silymarin against aflatoxin B1 induced hepatotoxicity in rats. Planta Med 66:709–713

    Article  CAS  PubMed  Google Scholar 

  • Remacle J, Michiels C, Raes M (1992) The importance of antioxidant enzymes in cellular aging and degeneration. EXS 62:99–108

    CAS  PubMed  Google Scholar 

  • Reyes AE, Perez DR, Alvarez A, Garrido J, Gentry MK, Doctor BP, Inestrosa NC (1997) A monoclonalantibody against acetylcholinesterase inhibits the formation of amyloid Wbrils induced by the enzyme. Biochem Biophys Res Commun 232(3):652–655

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Martín E, Casarejos MJ, Canals S, de Bernardo S, Mena MA (2002) Thiolic antioxidants protect from nitric oxide-induced toxicity in fetal midbrain cultures. Neuropharmacology 43:877–888

    Article  PubMed  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  CAS  PubMed  Google Scholar 

  • Saller R, Meier R, Brignoli R (2001) The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063

    Article  CAS  PubMed  Google Scholar 

  • Schümann J, Prockl J, Kiemer AK, Vollmar AM, Bang R, Tiegs G (2003) Silibinin protects mice from T cell-dependent liver injury. J Hepatol 39:333–340

    Article  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  • Shen XM, Dryhurst G (1998) Iron- and manganese-catalyzed autoxidation of dopamine in the presence of l-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol 11(7):824–837

    Article  CAS  PubMed  Google Scholar 

  • Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JB (1994) Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 62:205–216

    Article  CAS  PubMed  Google Scholar 

  • Spahr L, Butterworth RF, Fontaine S, Bui L, Therrien G, Milette PC, Lebrun LH, Zayed J, Leblanc A, Pomier-Layrargues G (1996) Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology 24:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Toone EJ (2002) The decomposition of thionitrites. Curr Opin Chem Biol 6:779–785

    Article  CAS  PubMed  Google Scholar 

  • Stone R, Stewart VC, Hurst RD, Clark JB, Heales SJ (1999) Astrocyte nitric oxide causes neuronal mitochondrial damage, but antioxidant release limits neuronal cell death. Ann NY Acad Sci 893:400–403

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC (2000) Protective effect of l-phenylalanine on rat brain acetylcholine esterase inhibition induced by free radicals. Clin Biochem 33(2):103–106

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela A, Garrido A (1994) Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol Res 27(2):105–112

    CAS  PubMed  Google Scholar 

  • Valenzuela A, Guerra R, Videla LA (1986) Antioxidant properties of the flavonoids silybin and (þ)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med 52(6):438–440

    Article  CAS  PubMed  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129

    CAS  PubMed  Google Scholar 

  • Witko V, Nguyen AT, Descamps-Latscha B (1992) Microtiter plate assay for phagocyte derived taurine-chloramines. J Clin Lab Anal 6:47–53

    Article  CAS  PubMed  Google Scholar 

  • Zayed J, Hong B, L’Espérance G (1999) Characterization of manganese- containing particles collected from the exhaust emissions of automobiles running with MMT additive. Environ Sci Technol 33(19):3341–3346

    Article  CAS  Google Scholar 

  • Zheng W, Zhao Q (2001) Iron overload following manganese exposure in cultured neuronal, but not neuroglial cells. Brain Res 897:175–179

    Article  CAS  PubMed  Google Scholar 

  • Zi X, Mukhtar H, Agarwal R (1997) Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. Biochem Biophys Res Commun 239(1):334–339

    Article  CAS  PubMed  Google Scholar 

  • Zi X, Feyes DK, Agarwal R (1998) Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclindependent kinases and associated cyclins. Clin Cancer Res 4(4):1055–1064

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Miss Dalenda Kchaou for their assistance in histolological techniques. The present work was supported by the grants of DGRST (Appui a la Recherche Universitaire de base, ARUB 99/UR/08-73), Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najiba Zeghal.

Additional information

H. Fetoui and M. Sefi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chtourou, Y., Fetoui, H., Sefi, M. et al. Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. Biometals 23, 985–996 (2010). https://doi.org/10.1007/s10534-010-9345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9345-x

Keywords

Navigation