Skip to main content
Log in

Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn2+ of Pseudomonas aeruginosa phosphorylcholine phosphatase

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the \( \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] \) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270. doi:10.1016/0003-2697(88)90484-8

    Article  CAS  PubMed  Google Scholar 

  • Beassoni PR, Otero LH, Massimelli MJ, Lisa AT, Domenech CE (2006) Critical active-site residues identified by site-directed mutagenesis in Pseudomonas aeruginosa phosphorylcholine phosphatase, a new member of the haloacid dehalogenases hydrolase superfamily. Curr Microbiol 53:534–539. doi:10.1007/s00284-006-0365-2

    Article  CAS  PubMed  Google Scholar 

  • Beassoni PR, Otero LH, Lisa AT, Domenech CE (2008) Using a molecular model and kinetic experiments in the presence of divalent cations to study the active site and catalysis of Pseudomonas aeruginosa phosphorylcholine phosphatase. Biochim Biophys Acta 1784:2038–2044. doi:10.1016/j.bbapap.2008.08.014

    CAS  PubMed  Google Scholar 

  • Bochatay L, Pearson P (2000) Metal ion coordination at the water-Manganite (-MnOOH) interface. II. An EXAFS study of Zn(II). J Colloid Interface Sci 229:593–599. doi:10.1006/jcis.2000.7014

    Article  CAS  PubMed  Google Scholar 

  • Domenech CE, Lisa AT, Salvano MA, Garrido MN (1992) Pseudomonas aeruginosa acid phosphatase. Activation by divalent cations and inhibition by aluminiun ion. FEBS Lett 1:96–98. doi:10.1016/0014-5793(92)80108-S

    Article  Google Scholar 

  • Dudev T, Lim C (2000) Metal binding in proteins: the effect of the dielectric medium. J Phys Chem B 104:3692–3694. doi:10.1021/jp9941559

    Article  CAS  Google Scholar 

  • Dudev T, Lim C (2001) Metal selectivity in metalloproteins: Zn2+ vs Mg2+. J Phys Chem B 105:4446–4452. doi:10.1021/jp004602g

    Article  CAS  Google Scholar 

  • Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–787. doi:10.1021/cr020467n

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, pp 571–607. doi:10.1385/1592598900

    Chapter  Google Scholar 

  • Harding MM (2000) The geometry of metal-ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal-donor interactions. Acta Cryst D56:857–867. doi:10.1107/S0907444900005849

    CAS  Google Scholar 

  • Harding MM (2001) Geometry of metal-ligand interactions in proteins. Acta Cryst D57:401–411. doi:10.1107/S0907444900019168

    CAS  Google Scholar 

  • Katz AK, Glusker JP, Markham GD, Bock CW (1998) Deprotonation of water in the presence of carboxylate and magnesium ions. J Phys Chem B 102:6342–6350. doi:10.1021/jp9815412

    Article  CAS  Google Scholar 

  • Kluge S, Weston J (2005) Can a hydroxide ligand trigger a change in the coordination number of magnesium ions in biological systems? Biochemistry 44:4877–4885. doi:10.1021/bi047454j

    Article  CAS  PubMed  Google Scholar 

  • Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237:260–273. doi:10.1006/abio.1996.0238

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pan G, Qin Y, Hu T, Wu Z, Xie Y (2004) EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces. II. Reversible adsorption of zinc on δ-MnO2. J Colloid Interface Sci 271:35–40. doi:10.1016/j.jcis.2003.11.029

    Article  CAS  PubMed  Google Scholar 

  • Lightstone FC, Schwegler E, Hood RQ, Gygi F, Galli G (2001) A first principles molecular dynamics simulation of the hydrated magnesium ion. Chem Phys Lett 343:549–555. doi:10.1016/S0009-2614(01)00735-7

    Article  CAS  Google Scholar 

  • Lisa AT, Lucchesi GI, Domenech CE (1994) Pathogenicity of Pseudomonas aeruginosa and its relationship to the choline metabolism through the action of cholinesterase, acid phosphatase, and phospholipase C. Curr Microbiol 29:193–199. doi:10.1007/BF01570153

    Article  CAS  Google Scholar 

  • Lisa AT, Beassoni PR, Masssimelli MJ, Otero LH, Domenech CE (2007) A glance on Pseudomonas aeruginosa phosphorylcholine phosphatase, an enzyme whose synthesis depends on the presence of choline in its environment. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Badajoz, Spain, pp 255–262

    Google Scholar 

  • Massimelli MJ, Beassoni PR, Forrellad MA, Barra JL, Garrido MN, Domenech CE, Lisa AT (2005) Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene. Curr Microbiol 50:251–256. doi:10.1007/s00284-004-4499.9

    Article  CAS  PubMed  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. doi:10.1021/ja00364a005

    Article  CAS  Google Scholar 

  • Pavlov M, Siegbahn PEM, Sandström M (1998) Hydration of beryllium, magnesium, calcium, and zinc ions using density functional theory. J Phys Chem A 102:219–228. doi:10.1021/jp972072r

    Article  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  • Salvano MA, Domenech CE (1999) Kinetic properties of purified Pseudomonas aeruginosa phosphorylcholine phosphatase indicated that this enzyme may be utilized by the bacteria to colonize in different environments. Curr Microbiol 39:1–8. doi:10.1007/PL00006819

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Osaki A (1967) Acidity and catalytic activity of metal ions. Bull Chem Soc Jpn 40:1728–1730. doi:10.1246/bcsj.40.1728

    Article  CAS  Google Scholar 

  • Wang W, Kim R, Jancarik J, Yokota H, Kim S (2001) Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 Å resolution. Structure 9:65–71. doi:10.1016/S0969-2126(00)00558-X

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Pan G (2005) Quantum chemical studies of mononuclear Zinc species of hydration and hydrolysis. J Phys Chem 109:7648–7652. doi:10.1021/jp045560p

    CAS  Google Scholar 

Download references

Acknowledgments

CED and ATL are Career Members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). PRB would like to acknowledge fellowship support from CONICET and LHO from MinCyT-Cba. This work was supported by grants from CONICET, Agencia Nacional de Investigaciones Científicas (FONCYT), ANPCYT-UNRC, and SECYT-UNRC of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Domenech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, L.H., Beassoni, P.R., Lisa, A.T. et al. Transition from octahedral to tetrahedral geometry causes the activation or inhibition by Zn2+ of Pseudomonas aeruginosa phosphorylcholine phosphatase. Biometals 23, 307–314 (2010). https://doi.org/10.1007/s10534-010-9289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9289-1

Keywords

Navigation